scholarly journals Ambon Banana-Tree Sap stimulated Endothelial Cell Migration in Human Umbilical Vein Endothelial Cells (HUVECs) Induced with Inflammatory Mediator IL-1

2019 ◽  
Vol 9 (1) ◽  
pp. 23-27
Author(s):  
Provisia Wulan ◽  
Maria Dorothy ◽  
Resha Alinda ◽  
Kristianingrum Sofiana ◽  
Bunga Prihardina ◽  
...  
2017 ◽  
Vol 41 (4) ◽  
pp. 1346-1359 ◽  
Author(s):  
Li Ju ◽  
Zhiwen Zhou ◽  
Bo Jiang ◽  
Yue Lou ◽  
Xirong Guo

Background/Aims: Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Methods: Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Results: Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. Conclusions: We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


1987 ◽  
Author(s):  
O BOUTHERIN-FALSON ◽  
N BLAES

Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in vascular endothelial cells. In addition to the role of exogenous agents, its production could be modulated by culture conditions : proliferative state, medium renewal, subcultivation... The use of endothelial cell growth factor (ECGF) associated with heparin has been shown to improve human endothelial cell proliferation. Here we report that human umbilical vein endothelial cells (HUVEC) grown in that medium produce less prostacyclin than without growth factor.HUVEC were cultured in RPMI-199 1:1 + 20% fetal calf serum, added or not with ECGF (Bovine hypothalamus extract BTI Cambridge, 24 ug/ml) and heparin (from porcine intestinal mucosa, Signa, 90 ug/ml). After 4 days in culture, medium was removed and replaced by Tyrode Hepes buffer and basal production was measured after 20 min. Cells were then submitted to 5 min thrombin to assess PGI2 production in stimulated conditions. PGI2 production was estimated by specific radioimmunoassay for 6 keto PGFjalpha. For each point, cell number in the culture was counted after Trypsin EDTA treatment. In the present study, cells grown in ECGF-heparin medium produce lower amount of PGI2, compared to heparin or control medium. This result was observed in both basal and stimulated conditions. For each medium (ECGF-heparin, heparin, control), correlations between PGI2 production per cell and log cell density were shown to be significantly negative.These observations suggest that ECGF effect on PGI2 production could be a consequence of its growth factor activity, notably by the fact that it leads to an endothelial monolayer made of more numerous cells. Since it is now suggested by a number of clinical observations that PGI2 is rather produced in pathological conditions, culture models showing a weak production of PGI2 appear in that connection doser to the physiological conditions.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43552-43562 ◽  
Author(s):  
Satish N. Nadig ◽  
Suraj K. Dixit ◽  
Natalie Levey ◽  
Scott Esckilsen ◽  
Kayla Miller ◽  
...  

Targeted micelles containing rapamycin (TRaM) suppressed the immune response of IL-8 in oxidatively stressed human umbilical vein endothelial cellsin vitro(a) and accumulated in aorta grafts for transplantation after 6 hours in cold perfusion solution (b).


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4675-4683 ◽  
Author(s):  
Ben T. Atkinson ◽  
Reema Jasuja ◽  
Vivien M. Chen ◽  
Prathima Nandivada ◽  
Bruce Furie ◽  
...  

Laser-induced vessel wall injury leads to rapid thrombus formation in an animal thrombosis model. The target of laser injury is the endothelium. We monitored calcium mobilization to assess activation of the laser-targeted cells. Infusion of Fluo-4 AM, a calcium-sensitive fluorochrome, into the mouse circulation resulted in dye uptake in the endothelium and circulating hematopoietic cells. Laser injury in mice treated with eptifibatide to inhibit platelet accumulation resulted in rapid calcium mobilization within the endothelium. Calcium mobilization correlated with the secretion of lysosomal-associated membrane protein 1, a marker of endothelium activation. In the absence of eptifibatide, endothelium activation preceded platelet accumu-lation. Laser activation of human umbilical vein endothelial cells loaded with Fluo-4 resulted in a rapid increase in calcium mobilization associated cell fluorescence similar to that induced by adenosine diphosphate (10μM) or thrombin (1 U/mL). Laser activation of human umbilical vein endothelial cells in the presence of corn trypsin inhibitor treated human plasma devoid of platelets and cell microparticles led to fibrin for-mation that was inhibited by an inhibitory monoclonal anti–tissue factor antibody. Thus laser injury leads to rapid endothelial cell activation. The laser activated endothelial cells can support formation of tenase and prothrombinase and may be a source of activated tissue factor as well.


1986 ◽  
Vol 103 (1) ◽  
pp. 81-86 ◽  
Author(s):  
P J Newman ◽  
Y Kawai ◽  
R R Montgomery ◽  
T J Kunicki

Human platelets participate in a number of adhesive interactions, including binding to exposed subendothelium after vascular injury, and platelet-platelet cohesion to form large aggregates. Platelet membrane glycoproteins (GP) IIb and IIIa constitute a receptor for fibrinogen that, together with fibrinogen and calcium, is largely responsible for mediating the formation of the primary hemostatic plug. Using highly specific polyclonal and monoclonal antibodies as probes, we could detect the presence of both of these glycoproteins in cultured human umbilical vein endothelial cells. Western-blot analysis showed that the endothelial cell analogues were similar in size to their platelet counterparts, and were present in cells that had been in culture for over 2 mo. Metabolic labeling of endothelium with [35S]methionine demonstrated that both GPIIb and GPIIIa were actively synthesized in culture. Using the technique of crossed immunoelectrophoresis, evidence was obtained that the endothelial cell forms of GPIIb and GPIIIa may exist complexed to one another after solubilization in Triton X-100. The presence of GPIIb-IIIa analogues in cultured endothelial cells may provide an opportunity to examine the structure, function, and synthesis of these two membrane glycoproteins, as well as provide a source of genetic material with which to begin detailed molecular genetic studies.


Sign in / Sign up

Export Citation Format

Share Document