scholarly journals Does caffeine supplementation alter energy contribution during a work-based ~30 min cycling time-trial?

2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.

2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2019 ◽  
Author(s):  
Fabiano Tomazini ◽  
Ana Carla S. Mariano ◽  
Victor A. Andrade-Souza ◽  
Viviane C. Sebben ◽  
Carlos A. B. de Maria ◽  
...  

AbstractAcetaminophen has been combined with caffeine for therapeutic purpose, but the effect of co-ingestion of acetaminophen and caffeine on exercise performance has not been investigated. The aim of this study was to determine the effect of isolated and combined ingestion of caffeine and acetaminophen on performance during a 4-km cycling time-trial. In a double-blind, crossover design, eleven men, accustomed to cycling recreationally, completed a 4-km cycling time-trial one hour after the ingestion of cellulose (PLA), acetaminophen (20 mg·kg−1body mass, ACT), caffeine (5 mg·kg−1body mass, CAF) or combined acetaminophen and caffeine (20 and 5 mg·kg−1body mass, respectively, ACTCAF). The perception of pain and rating of perceived exertion were recorded every 1-km, and electromyography and oxygen uptake were continually recorded and averaged each 1-km. Plasma lactate concentration was measured before and immediately after the trial. The time and mean power during the 4-km cycling time-trial was significantly improved (P< 0.05) in CAF (407.9 ± 24.5 s, 241.4 ± 16.1 W) compared to PLA (416.1 ± 34.1 s, 234.1 ± 19.2 W) and ACT (416.2 ± 26.6 s, 235.8 ± 19.7 W). However, there was no difference between ACTCAF (411.6 ± 27.7 s, 238.7 ± 18.7 W) and the other conditions (P> 0.05). The perception of pain, rating of perceived exertion, electromyography, oxygen uptake, and plasma lactate were similar across the conditions (P> 0.05). In conclusion, caffeine but not acetaminophen increases power output ultimately increasing performance during a 4-km cycling time-trial.


2008 ◽  
Vol 3 (4) ◽  
pp. 424-438 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Benjamin J. Dascombe ◽  
Peter R.J. Reaburn ◽  
Mark Osborne

Purpose:The present investigation examined the physiological and performance effects of lower-body compression garments (LBCG) during a one-hour cycling time-trial in well-trained cyclists.Methods:Twelve well-trained male cyclists ([mean ± SD] age: 20.5 ± 3.6 years; height: 177.5 ± 4.9 cm; body mass: 70.5 ± 7.5 kg; VO2max: 55.2 ± 6.8 mL·kg−1·min−1) volunteered for the study. Each subject completed two randomly ordered stepwise incremental tests and two randomly ordered one-hour time trials (1HTT) wearing either full-length SportSkins Classic LBCG or underwear briefs (control). Blood lactate concentration ([BLa−]), heart rate (HR), oxygen consumption (VO2) and muscle oxygenation (mOxy) were recorded throughout each test. Indicators of cycling endurance performance were anaerobic threshold (AnT) and VO2max values from the incremental test, and mean power (W), peak power (W), and total work (kJ) from the 1HTT Magnitude-based inferences were used to determine if LBCG demonstrated any performance and/or physiological benefits.Results:A likely practically significant increase (86%:12%:2%; η2 = 0.6) in power output at AnT was observed in the LBCG condition (CONT: 245.9 ± 55.7 W; LBCG: 259.8 ± 44.6 W). Further, a possible practically significant improvement (78%:19%:3%; η2 = 0.6) was reported in muscle oxygenation economy (W·%mOxy−1) across the 1HTT (mOxy: CONT: 52.2 ± 12.2%; LBCG: 57.3 ± 8.2%).Conclusions:The present results demonstrated limited physiological benefits and no performance enhancement through wearing LBCG during a cycling time trial.


2007 ◽  
Vol 17 (2) ◽  
pp. 206-217 ◽  
Author(s):  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Desiré Ferreira Coelho ◽  
Fabiana Braga Benatti ◽  
Alessandra Whyte Gailey ◽  
...  

The aim of the present study was to investigate whether pre exercise sodium-bicarbonate ingestion improves judo-related performance. The study used 2 different protocols to evaluate performance: 3 bouts of a specific judo test (n = 9) and 4 bouts of the Wingate test for upper limbs (n = 14). In both protocols athletes ingested 0.3 g/kg of sodium bicarbonate or placebo 2 h before the tests. Blood samples were collected to determine lactate level, and levels of perceived exertion were measured throughout the trials. The study used a double-blind, counterbalanced, crossover design. Ingestion of sodium bicarbonate improved performance in Bouts 2 and 3 of Protocol 1 (P < 0.05), mean power in Bouts 3 and 4 of Protocol 2 (P < 0.05), and peak power in Bout 4 of Protocol 2 (P < 0.05). Ingestion of bicarbonate increased lactate concentration in Protocol 1 (P < 0.05) but not in Protocol 2. Ratings of perceived exertion did not differ between treatments. In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


2018 ◽  
Vol 43 (6) ◽  
pp. 571-579 ◽  
Author(s):  
Silva Suvi ◽  
Martin Mooses ◽  
Saima Timpmann ◽  
Luule Medijainen ◽  
Daria Narõškina ◽  
...  

The purpose of this study was to assess the impact of sodium citrate (CIT) ingestion (600 mg·kg−1) during recovery from dehydrating cycling exercise (DE) on subsequent 40-km cycling performance in a warm environment (32 °C). Twenty male nonheat-acclimated endurance athletes exercised in the heat until 4% body mass (BM) loss occurred. After 16 h recovery with consumption of water ad libitum and prescribed diet (evening meal 20 kcal·kg−1, breakfast 12 kcal·kg−1) supplemented in a double-blind, randomized, crossover manner with CIT or placebo (PLC), they performed 40-km time-trial (TT) on a cycle ergometer in a warm environment. During recovery greater increases in BM and plasma volume (PV) concomitant with greater water intake and retention occurred in the CIT trial compared with the PLC trial (p < 0.0001). During TT there was greater water intake and smaller BM loss in the CIT trial than in the PLC trial (p < 0.05) with no between-trial differences (p > 0.05) in sweat loss, PV decrement, ratings of perceived exertion, or TT time (CIT 68.10 ± 3.28 min, PLC 68.11 ± 2.87 min). At the end of TT blood lactate concentration was higher (7.58 ± 2.44 mmol·L−1 vs 5.58 ± 1.32 mmol·L−1; p = 0.0002) and rectal temperature lower (39.54 ± 0.50 °C vs 39.65 ± 0.52 °C; p = 0.033) in the CIT trial than in the PLC trial. Compared with pre-DE time point, PV had decreased to a lower level in the PLC trial than in the CIT trial (p = 0.0001). In conclusion, CIT enhances rehydration after exercise-induced dehydration but has no impact on subsequent 40-km cycling TT performance in a warm uncompensable environment.


2020 ◽  
Vol 15 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Anna E. Voskamp ◽  
Senna van den Bos ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Dionne A. Noordhof

Background: Gross efficiency (GE) declines during high-intensity exercise. Increasing extracellular buffer capacity might diminish the decline in GE and thereby improve performance. Purpose: To examine if sodium bicarbonate (NaHCO3) supplementation diminishes the decline in GE during a 2000-m cycling time trial. Methods: Sixteen male cyclists and 16 female cyclists completed 4 testing sessions including a maximal incremental test, a familiarization trial, and two 2000-m GE tests. The 2000-m GE tests were performed after ingestion of either NaHCO3 supplements (0.3 g/kg body mass) or placebo supplements (amylum solani, magnesium stearate, and sunflower oil capsules). The GE tests were conducted using a double-blind, randomized, crossover design. Power output, gas exchange, and time to complete the 2000-m time trials were recorded. Capillary blood samples were analyzed for blood bicarbonate, pH, and lactate concentration. Data were analyzed using magnitude-based inference. Results: The decrement in GE found after the 2000-m time trial was possibly smaller in the male and female groups after NaHCO3 than with placebo ingestion, with the effect in both groups combined being unclear. The effect on performance was likely trivial for males (placebo 164.2 [5.0] s, NaHCO3 164.3 [5.0] s; Δ0.1; ±0.6%), unclear for females (placebo 178.6 [4.8] s, NaHCO3 178.0 [4.3] s; Δ−0.3; ±0.5%), and very likely trivial when effects were combined. Blood bicarbonate, pH, and lactate concentration were substantially elevated from rest to pretest after NaHCO3 ingestion. Conclusions: NaHCO3 supplementation results in an unclear effect on the decrease in GE during high-intensity exercise and in a very likely trivial effect on performance.


Sports ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 55
Author(s):  
Adam J. Pinos ◽  
Elton M. Fernandes ◽  
Eric Viana ◽  
Heather M. Logan-Sprenger ◽  
David J. Bentley

Sprint swimming is a short duration, high intensity sport requiring a relatively greater contribution of energy from anaerobic metabolism. Understanding energy system utilization for the classification of a competitive swimmer (sprint or distance) may be useful for both training prescription and event specialization. The relationship between anaerobic swim ergometer testing and adolescent sprint swimming performance has not been investigated. The purpose of this study was to compare the performance and physiological responses during a maximal all-out ergometer test as well as the maximal anaerobic lactate test in a group of sprint vs. middle-distance specialized swimmers. Sixteen (n = 16) competitive swimmers (mean ± standard deviation (SD), age 16.8 ± 0.7 year; body mass 67.3 ± 9.8 kg) were categorized into two gender matched groups: sprint (n = 8) and middle-distance (n = 8). Each athlete performed (1) a 45 s swim ergometer maximal test to determine peak and mean power output (Watts (W)), (2) a MANLT test to determine peak and average velocity as well as the post-exercise lactate response, and (3) a 50 m swim time trial. The sprint group showed a higher mean (p = 0.026) and peak (p = 0.031) velocity during the MANLT. In addition, blood lactate concentration was significantly (p < 0.01) higher in the sprint vs. middle-distance trained group at 3 and 12 min after completion of the MANLT (3-min post 11.29 ± 2.32 vs. 9.55 ± 3.48 mmol/L; 12-min post 8.23 ± 2.28 vs. 7.05 ± 2.47 mmol/L). The power output during the 45 s all-out swimming ergometer test was higher in the sprint trained group. The results of this study demonstrate the anaerobic contribution to sprint swimming measured during an all-out dryland ergometer test.


2012 ◽  
Vol 22 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew E. Kilding ◽  
Claire Overton ◽  
Jonathan Gleave

Purpose:To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.Method:Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.Results:Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).Conclusions:When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


Author(s):  
Rebecca J. Toone ◽  
James A. Betts

This study was designed to compare the effects of energy-matched carbohydrate (CHO) and carbohydrate-protein (CHO-PRO) supplements on cycling time-trial performance. Twelve competitive male cyclists and triathletes each completed 2 trials in a randomized and counterbalanced order that were separated by 5–10 d and applied in a double-blind manner. Participants performed a 45-min variable-intensity exercise protocol on a cycle ergometer while ingesting either a 9% CHO solution or a mixture of 6.8% CHO plus 2.2% protein in volumes providing 22 kJ/kg body mass. Participants were then asked to cycle 6 km in the shortest time possible. Blood glucose and lactate concentrations were measured every 15 min during exercise, along with measures of substrate oxidation via indirect calorimetry, heart rate, and ratings of perceived exertion. Mean time to complete the 6-km time trial was 433 ± 21 s in CHO trials and 438 ± 22 s in CHO-PRO trials, which represents a 0.94% (CI: 0.01, 1.86) decrement in performance with the inclusion of protein (p = .048). However, no other variable measured in this study was significantly different between trials. Reducing the quantity of CHO included in a supplement and replacing it with protein may not represent an effective nutritional strategy when the supplement is ingested during exercise. This may reflect the central ergogenic influence of exogenous CHO during such activity.


Sign in / Sign up

Export Citation Format

Share Document