scholarly journals α-Lipoic Acid Prevents Endothelial Dysfunction in Obese Rats via Activation of AMP-Activated Protein Kinase

2005 ◽  
Vol 25 (12) ◽  
pp. 2488-2494 ◽  
Author(s):  
Woo Je Lee ◽  
In Kyu Lee ◽  
Hyoun Sik Kim ◽  
Yun Mi Kim ◽  
Eun Hee Koh ◽  
...  
2004 ◽  
Vol 10 (7) ◽  
pp. 727-733 ◽  
Author(s):  
Min-Seon Kim ◽  
Joong-Yeol Park ◽  
Cherl Namkoong ◽  
Pil-Geum Jang ◽  
Je-Won Ryu ◽  
...  

2021 ◽  
Author(s):  
Hsin-Hsueh Shen ◽  
Ming-Ting Chung ◽  
Shieh-Yang Huang ◽  
Ching-Wen Kung ◽  
Shu-Ying Chen ◽  
...  

Abstract BackgroundBilateral ovariectomy is an experimental model used to analyze the conditions of menopause and develop strategies for alleviation of the deleterious effects during estrogen deficiency. Brown and beige adipocytes exert thermogenesis capacities and are promising therapeutic strategy for obesity. This study aims to investigate the adipose tissue browning potentials of antioxidant α-lipoic acid (ALA) and underlying mechanisms involved in ovariectomized (Ovx) rats.Methods:Eight weeks old female Wistar rats were randomly divided into Sham or Ovx groups. The Ovx rats were subjected to bilateral ovariectomy and administered with ALA 200 or ALA 300 mg/kg/day (gavage) for 8 weeks. Results:Ovx group significantly increased boy weight (BW) and fat pad mass as compared to Sham group, while ALA supplementation reversed these changes. Lipid profiles including serum triglycerides (TG), total (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated in the Ovx group, whereas the ALA treatment showed a significant decrease in these levels. Furthermore, high density lipoprotein cholesterol (HDL-C) and myokine irisin secretion were increased by ALA as well. Morphology results showed ALA treatment reduced Ovx-induced adipocyte hypertrophy and enhanced UCP1 expression by immunohistochemical staining in inguinal WAT. Protein expression of brown fat-specific markers UCP1, PRDM16 and CIDEA was markedly reduced in Ovx rats, whereas ALA treatment reversed these changes. ALA significantly increased liver kinase B1 (LKB1) and phosphorylation of AMP-activated protein kinase (AMPK) and the downstream acetyl-CoA carboxylase (ACC) that were decreased by Ovx, suggesting the browning effects were mediated by AMPK signaling. Conclusions:ALA ameliorates obesity caused by hormone deprivation in menopause via conversion of white to beige adipocytes concomitant with the activation of AMPK signaling.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Qqilong Wang ◽  
Zhonglin Xie ◽  
Huaiping Zhu ◽  
Ye Ding ◽  
Ming-Hui Zou

Introduction: AMP-activated protein kinase (AMPK) has been reported to regulate mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which AMPK regulates mitochondrial dynamics remain poorly characterized. We hypothesized that AMPK deficiency regulates mitochondrial fission that will result in endothelial dysfunction. Methods/Results: Deletion of AMPKα2 resulted in defective autophagy, dynamin-related protein (Drp1) accumulation, and aberrant mitochondrial fragmentation in the aortic endothelium of mice. Furthermore, autophagy inhibition by chloroquine treatment or Atg7 small interfering RNA (siRNA) transfection upregulated Drp1 expression and triggered Drp1-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of Atg7 or chronic administration of rapamycin, the mammalian target of rapamycin kinase inhibitor, promoted Drp1 degradation and attenuated mitochondrial fission in AMPKα2 -/- mice, suggesting that defective autophagy contributes to enhanced Drp1 expression and mitochondrial fragmentation. Interesting, the genetic (Drp1 siRNA) or pharmacological (mdivi-1) inhibition of Drp1 ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas from AMPKα2 -/- mice. This suggests that aberrant Drp1 is responsible for enhanced mitochondrial fission and endothelial dysfunction in AMPKα knockout mice. Conclusions: Our results show that AMPKα deletion promoted mitochondrial fission in vascular endothelial cells by inhibiting the autophagy-dependent degradation of Drp1.


2007 ◽  
Vol 102 (5) ◽  
pp. 436-444 ◽  
Author(s):  
A. Onay-Besikci ◽  
C. Wagg ◽  
T. P. Lopaschuk ◽  
W. Keung ◽  
G. D. Lopaschuk

2007 ◽  
Vol 293 (4) ◽  
pp. C1395-C1403 ◽  
Author(s):  
Qingwu W. Shen ◽  
Mei J. Zhu ◽  
Junfeng Tong ◽  
Jun Ren ◽  
Min Du

-α-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 μM ALA increased the activity and phosphorylation of the AMPK α-subunit at Thr172. Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser79 was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca2+ concentration measured by fura-2 fluorescent microscopy ( P < 0.05), showing that ALA may activate AMPK through enhancing Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca2+ by loading cells with 25 μM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser79. Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser79. In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.


Sign in / Sign up

Export Citation Format

Share Document