scholarly journals Role of Myocardial Neuronal Nitric Oxide Synthase–Derived Nitric Oxide in β-Adrenergic Hyporesponsiveness After Myocardial Infarction–Induced Heart Failure in Rat

Circulation ◽  
2004 ◽  
Vol 110 (16) ◽  
pp. 2368-2375 ◽  
Author(s):  
Jennifer K. Bendall ◽  
Thibaud Damy ◽  
Philippe Ratajczak ◽  
Xavier Loyer ◽  
Virginie Monceau ◽  
...  
Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


1995 ◽  
Vol 15 (5) ◽  
pp. 774-778 ◽  
Author(s):  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
Verna L. Baughman ◽  
Heidi M. Koenig ◽  
Ronald F. Albrecht

The nitric oxide synthase (NOS) inhibitors, nitro-L-arginine, its methyl ester, and N-monomethyl-L-arginine, have been shown to attenuate resting CBF and hypercapnia-induced cerebrovasodilation. Those agents nonspecifically inhibit the endothelial and neuronal NOS (eNOS and nNOS). In the present study, we used a novel nNOS inhibitor, 7-nitroindazole (7-NI) to examine the role of nNOS in CBF during normocapnia and hypercapnia in fentanyl/N2O-anesthetized rats. CBF was monitored using laser-Doppler flowmetry. Administration of 7-NI (80 mg kg−1 i.p.) reduced cortical brain NOS activity by 57%, the resting CBF by 19–27%, and the CBF response to hypercapnia by 60%. The 60% reduction was similar in magnitude to the CBF reductions observed in previous studies in which nonspecific NOS inhibitors were used. In the present study, 7-NI did not increase the MABP. Furthermore, the CBF response to oxotremorine, a blood–brain barrier permeant muscarinic agonist that induces cerebrovasodilation via endothelium-derived NO, was unaffected by 7-NI. These results confirmed that 7-NI does not influence eNOS; they also indicated that the effects of 7-NI on the resting CBF and on the CBF response to hypercapnia in this study were solely related to its inhibitory action on nNOS. The results further suggest that the NO synthesized by the action of nNOS participates in regulation of basal CBF and is the major, if not the only, category of NO contributing to the hypercapnic CBF response.


Sign in / Sign up

Export Citation Format

Share Document