scholarly journals A Definition for Zero Potential

1959 ◽  
Vol 7 (6) ◽  
pp. 1039-1049 ◽  
Author(s):  
C. V. NELSON ◽  
P. GASTONGUAY
Keyword(s):  
2012 ◽  
Vol 101 (24) ◽  
pp. 243302 ◽  
Author(s):  
Yasuhiro Mashiko ◽  
Dai Taguchi ◽  
Martin Weis ◽  
Takaaki Manaka ◽  
Mitsumasa Iwamoto

2019 ◽  
Vol 2019 (754) ◽  
pp. 143-178 ◽  
Author(s):  
Sven Meinhardt ◽  
Markus Reineke

Abstract The main result of this paper is the statement that the Hodge theoretic Donaldson–Thomas invariant for a quiver with zero potential and a generic stability condition agrees with the compactly supported intersection cohomology of the closure of the stable locus inside the associated coarse moduli space of semistable quiver representations. In fact, we prove an even stronger result relating the Donaldson–Thomas “function” to the intersection complex. The proof of our main result relies on a relative version of the integrality conjecture in Donaldson–Thomas theory. This will be the topic of the second part of the paper, where the relative integrality conjecture will be proven in the motivic context.


2017 ◽  
Vol 3 (1) ◽  
pp. 63-78
Author(s):  
Сардаана Герасимова ◽  
Sardaana Gerasimova ◽  
Петр Гололобов ◽  
Peter Gololobov ◽  
Владислав Григорьев ◽  
...  

This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of RAS. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the mentioned turbulence field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the plane of the solar equator can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the mentioned plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.


2019 ◽  
Vol 7 (6) ◽  
pp. 155
Author(s):  
Xu Li ◽  
Zhu Ziqi ◽  
Yang Qi ◽  
Zhu Liang ◽  
Li Hui ◽  
...  

2008 ◽  
Vol 602 ◽  
pp. 241-266 ◽  
Author(s):  
LARRY J. PRATT ◽  
KARL R. HELFRICH ◽  
DAVID LEEN

The stability of a hydraulically driven sill flow in a rotating channel with smoothly varying cross-section is considered. The smooth topography forces the thickness of the moving layer to vanish at its two edges. The basic flow is assumed to have zero potential vorticity, as is the case in elementary models of the hydraulic behaviour of deep ocean straits. Such flows are found to always satisfy Ripa's necessary condition for instability. Direct calculation of the linear growth rates and numerical simulation of finite-amplitude behaviour suggests that the flows are, in fact, always unstable. The growth rates and nonlinear evolution depend largely on the dimensionless channel curvature κ=2αg′/f2, where 2α is the dimensional curvature, g′ is the reduced gravity, and f is the Coriolis parameter. Very small positive (or negative) values of κ correspond to dynamically wide channels and are associated with strong instability and the breakup of the basic flow into a train of eddies. For moderate or large values of κ, the instability widens the flow and increases its potential vorticity but does not destroy its character as a coherent stream. Ripa's condition for stability suggests a theory for the final width and potential vorticity that works moderately well. The observed and predicted growth in these quantities are minimal for κ≥1, suggesting that the zero-potential-vorticity approximation holds when the channel is narrower than a Rossby radius based on the initial maximum depth. The instability results from a resonant interaction between two waves trapped on opposite edges of the stream. Interactions can occur between two Kelvin-like frontal waves, between two inertia–gravity waves, or between one wave of each type. The growing disturbance has zero energy and extracts zero energy from the mean. At the same time, there is an overall conversion of kinetic energy to potential energy for κ>0, with the reverse occurring for κ<0. When it acts on a hydraulically controlled basic state, the instability tends to eliminate the band of counterflow that is predicted by hydraulic theory and that confounds hydraulic-based estimates of volume fluxes in the field. Eddy generation downstream of the controlling sill occurs if the downstream value of κ is sufficiently small.


Parasitology ◽  
1982 ◽  
Vol 85 (1) ◽  
pp. 163-178 ◽  
Author(s):  
D. P. Thompson ◽  
R. A. Pax ◽  
J. L. Bennett

SUMMARYStandard intracellular microelectrode techniques were used to determine the electrical properties of the tegument and sub-tegumental regions in male Schistosoma mansoni. Three distinct compartments of electrical potential were observed. The resting potentials recorded in these compartments of –45·9±2·5 mV (Eteg), –22·0±1·1 mV (E2) and – 4·7±0·3 mV (E3) corroborate those previously reported by Fetterer, Pax & Bennett (1980) and Bricker, Pax & Bennett (1981). Input resistance was measured in each compartment and was found to be 4·5 MΩ (tegument), 9·2 MΩ (E2) and 3·5 MΩ (E3). Time-constants for the tegument, E2 and E3 were 0·24±0·01 msec, 0·25±0·01 msec and 0·13±0·01 msec, respectively. Multiple electrode experiments revealed that the tegument and E2 compartment are electrical syncytia with similar current-spreading capabilities. Low resistance pathways also appear to connect the tegument and E2 region, since electrotonic signals initiated in either of those compartments experience only a 15–25% reduction upon passing into the other. Injecting large (> 200 nA) depolarizing current pulses into the tegument or E2 compartment often resulted in the initiation of active membrane responses. These spikes were highly variable, ranging from 4 to 75 mV in magnitude (occasionally overshooting zero potential by as much as 25 mV) and from 10–40 msec in duration. The responses were not actively propagated along the parasite, and their decay over distance was approximately equal to that predicted on the basis of length constant values obtained from electrotonic signals. The addition of a non-diffusible solute to the recording medium resulted in a significant reduction in the current-spreading capacity of both the tegument and E2 compartment. Coupling ratios between the tegument and E2 compartment were decreased, and the input resistance for both compartments increased, while resting potentials remained constant. Active responses could not be evoked in schistosomes exposed to the hyperosmotic medium.


2012 ◽  
Vol 60 (2) ◽  
pp. 259-263 ◽  
Author(s):  
J.F. Ganghoffer

Abstract. The volumetric and surface growth of continuum solid bodies is considered, in the framework of the thermodynamics of open systems exchanging mass, work and chemical species (nutrients) with their environment. More specifically, we address the issue of setting up extremum principles for such growing bodies. A general three-field variational principle is set up, based on the so-called zero potential, which is a byproduct of the grand potential. The stationnarity conditions of those potentials deliver balance laws for generalized volumetric and surface Eshelby tensors, leading further to the identification of the material forces for growth.


Sign in / Sign up

Export Citation Format

Share Document