Abstract 1766: Diet-Induced Obesity Causes Inflammation by Activating Toll-Like Receptor 4 Signaling and Downregulates AMPK in Heart
Increasing evidence implicates the role of inflammation in diabetes and complications. Macrophages are shown to infiltrate adipose tissue in obesity, and inflammatory cytokines alter glucose metabolism in peripheral organs. Male C57BL/6 mice were fed high-fat diet (HFD; 55% fat by calories) or chow diet for 6 weeks, and heart samples were taken for analysis (n = 5~7). Chronic HFD increased whole body fat mass, measured by 1 H-MRS, by 3-fold, and elevated plasma IL-6 and TNF-α levels by 40%. Diet-induced obesity caused inflammation in heart and increased macrophage-specific CD68 levels by 5-fold (Fig. 1) (* P < 0.05 vs Chow). Diet-induced cardiac inflammation was associated with significant increases in toll-like receptor 4 (TLR4) and MyD88 levels in heart (Fig. 2). HFD also increased cardiomyocyte SOCS3 levels by more than 3-fold (Fig. 3). Myocardial glucose metabolism was measured using intravenous injection of 2-[ 14 C]deoxyglucose in awake mice (n = 6). Chronic HFD reduced myocardial glucose uptake by 50%, and this was associated with significant reductions in total GLUT4 and GLUT1 protein levels. Further, Thr 172 phosphorylation of AMPK, a critical regulator of energy balance, was markedly reduced in heart following HFD (Fig. 4). These results demonstrate that diet-induced obesity causes macrophage infiltration and inflammation in heart by increasing TLR4 signaling in cardiomyocytes. Similar to the effects of inflammation on peripheral glucose metabolism, diet-induced cardiac inflammation reduced myocardial glucose metabolism by downregulating AMPK and GLUT protein levels. Thus, our findings underscore an important role of inflammation in diabetic heart.