Abstract 1766: Diet-Induced Obesity Causes Inflammation by Activating Toll-Like Receptor 4 Signaling and Downregulates AMPK in Heart

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hwi Jin Ko ◽  
Dae Young Jung ◽  
Zhexi Ma ◽  
Jason K Kim

Increasing evidence implicates the role of inflammation in diabetes and complications. Macrophages are shown to infiltrate adipose tissue in obesity, and inflammatory cytokines alter glucose metabolism in peripheral organs. Male C57BL/6 mice were fed high-fat diet (HFD; 55% fat by calories) or chow diet for 6 weeks, and heart samples were taken for analysis (n = 5~7). Chronic HFD increased whole body fat mass, measured by 1 H-MRS, by 3-fold, and elevated plasma IL-6 and TNF-α levels by 40%. Diet-induced obesity caused inflammation in heart and increased macrophage-specific CD68 levels by 5-fold (Fig. 1) (* P < 0.05 vs Chow). Diet-induced cardiac inflammation was associated with significant increases in toll-like receptor 4 (TLR4) and MyD88 levels in heart (Fig. 2). HFD also increased cardiomyocyte SOCS3 levels by more than 3-fold (Fig. 3). Myocardial glucose metabolism was measured using intravenous injection of 2-[ 14 C]deoxyglucose in awake mice (n = 6). Chronic HFD reduced myocardial glucose uptake by 50%, and this was associated with significant reductions in total GLUT4 and GLUT1 protein levels. Further, Thr 172 phosphorylation of AMPK, a critical regulator of energy balance, was markedly reduced in heart following HFD (Fig. 4). These results demonstrate that diet-induced obesity causes macrophage infiltration and inflammation in heart by increasing TLR4 signaling in cardiomyocytes. Similar to the effects of inflammation on peripheral glucose metabolism, diet-induced cardiac inflammation reduced myocardial glucose metabolism by downregulating AMPK and GLUT protein levels. Thus, our findings underscore an important role of inflammation in diabetic heart.

2015 ◽  
Vol 309 (3) ◽  
pp. R304-R313 ◽  
Author(s):  
Ryan P. McMillan ◽  
Yaru Wu ◽  
Kevin Voelker ◽  
Gabrielle Fundaro ◽  
John Kavanaugh ◽  
...  

Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuanyuan Sun ◽  
Dadong Guo ◽  
Bin Liu ◽  
Xuewei Yin ◽  
Huixia Wei ◽  
...  

Uveitis is a serious eye disease that usually damages young adult’s health. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate messenger RNA (mRNA) expression. It is predicted that rno-miR-30b-5p can regulate the expressions of interleukin-10 (IL-10) and Toll-like receptor 4 (TLR4). In this study, the regulatory role of rno-miR-30b-5p in IL-10 and TLR4 gene expressions was validated using luciferase activity assay. Further, the inflammatory manifestation of the anterior segment and pathological examination of the eye were explored in experimental autoimmune uveitis (EAU) rats. Meanwhile, the levels of rno-miR-30b-5p in eye tissues, spleen, and lymph nodes were measured using quantitative PCR (Q-PCR). IL-10 and TLR4 in spleen and lymph nodes were further separately determined by using Q-PCR and Enzyme-Linked Immunosorbent Assay (ELISA). Moreover, rno-miR-30b-5p mimic and its inhibitor were separately transfected into purified T cells, and the levels of IL-10 and TLR4 were detected using PCR, flow cytometry, and ELISA techniques. Results indicate that rno-miR-30b-5p was downregulated in spleen, lymph nodes, and eye tissues whereas the expressions of IL-10 and TLR4 at mRNA and protein levels were upregulated. The levels of IL-10 and TLR4 were negatively correlated to rno-miR-30b-5p levels. The result of in vitro cell transfection experiment indicates that IL-10 and TLR4 expressions were inhibited at mRNA and protein levels after T cells incubated with rno-miR-30b-5p mimic. However, the IL-10 and TLR4 mRNA levels were upregulated in purified T cells from spleen and lymph nodes after treatment with miR-30b-5p antagonist. In addition, there was no evident change of IL-10 and TLR4 proteins in spleen and lymph node T cells between EAU control and negative treatment groups. Flow cytometry analysis revealed that rno-miR-30b-5p mimic could reduce the number of both IL-10 and TLR4 positive cells, whereas rno-miR-30b-5p inhibitor could increase the number of IL-10 and TLR4 positive cells. Our study demonstrates that rno-miR-30b-5p influences the development of uveitis by regulating the level of IL-10 and TLR4 positive cells, thereby playing a role in the pathogenesis of uveitis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hwi Jin Ko ◽  
Dae Young Jung ◽  
Jason K Kim

Obesity and hyperlipidemia are major risk factors of heart disease. Recent studies showed that inflammation is associated with obesity and plays a role in the pathogenesis of diabetic complications. In this report, we examined the effects of lipid on cardiac inflammation and metabolism. Intralipid (2.5 ml/kg/hr; triglyceride emulsion) and heparin (6 U/hr) or glycerol (control) were intravenously infused for 5 hrs to raise circulating fatty acids (FFA) levels in awake C57BL/6 mice (n=10~11). Plasma FFA levels were raised by 3.5-fold over the glycerol-infused groups, and heart samples were taken at the end of experiments. Acute lipid infusion caused cardiac inflammation and increased local macrophage-specific CD68 levels in heart (Fig. 1 ; * P <0.05). Local levels of cytokines (IL-6 and TNF-α) were elevated by ~2-fold following lipid infusion (Fig. 2 ). Heart expression of the C-C motif chemokine receptor-2 (CCR2), which binds the MCP-1 was elevated by 70% following lipid infusion, and this was associated with increased levels of MyD88 in heart, supporting the role of TLR4 signaling in lipid-induced cardiac inflammation. Lipid-induced elevation of local cytokine levels resulted in increased cardiomyocyte expression of SOCS3 (Fig. 3 ). Further, acute lipid infusion reduced total AMPK protein levels and Thr 172 phosphorylation of AMPK in heart (Fig. 4 ). These data are consistent with the role of inflammation in the regulation of myocardial AMPK. Our findings indicate that fatty acids and nutrient stress are involved in obesity-induced cardiac inflammation and alterations in myocardial glucose metabolism.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 280-LB ◽  
Author(s):  
SHANU JAIN ◽  
DILIP K. TOSH ◽  
MARC REITMAN ◽  
KENNETH A. JACOBSON

2013 ◽  
Vol 57 (5) ◽  
pp. 77S
Author(s):  
Ali Navi ◽  
Rebekah Yu ◽  
Xu Shi-Wen ◽  
Sidney Shaw ◽  
George Hamilton ◽  
...  

Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Júlio Panzera Gonçalves ◽  
Breno Augusto Magalhães ◽  
Paulo Henrique Almeida Campos-Junior

Abstract Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus–oocyte complex (COC) expansion, maternal–fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4−/− (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4−/− mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4−/− mice oviducts after superovulation, and in heterozygous pairs, TLR4−/− females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.


2013 ◽  
Vol 99 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Alexander Jenke ◽  
Sabrina Wilk ◽  
Wolfgang Poller ◽  
Urs Eriksson ◽  
Alan Valaperti ◽  
...  

2007 ◽  
Vol 128 (5-6) ◽  
pp. 409-411 ◽  
Author(s):  
Almut Nebel ◽  
Friederike Flachsbart ◽  
Arne Schäfer ◽  
Michael Nothnagel ◽  
Susanna Nikolaus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document