Abstract 637: Hydrogen Sulfide Acts on Endothelial Cells to Elicit Dilation.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Nancy L Kanagy ◽  
Jessica M Osmond ◽  
Olan Jackson-Weaver ◽  
Benjimen R Walker

Hydrogen sulfide (H 2 S), produced by the enzyme cystathionine-γ lyase (CSE), dilates arteries by hyperpolarizing and relaxing vascular smooth muscle cells (VSMC) and CSE knock-out causes hypertension and endothelial dysfunction showing the importance of this system. However, it is not clear if H 2 S-induced VSMC depolarization and relaxation is mediated by direct effects on VSMC or indirectly through actions on endothelial cells (EC). We reported previously that disrupting EC prevents H 2 S-induced vasodilation suggesting H 2 S might act directly on EC. Because inhibiting large-conductance Ca 2+ -activated K + (BK Ca ) channels also inhibits H 2 S-induced dilation, we hypothesized that H 2 S activates EC BK Ca channels to hyperpolarize EC and increase EC Ca 2+ which stimulates release of a secondary hyperpolarizing factor. Small mesenteric arteries from male Sprague-Dawley rats were used for all experiments. We found that EC disruption prevented H 2 S-induced VSMC membrane potential ( E m ) hyperpolarization. Blocking EC BK Ca channels with luminal application of the BK Ca inhibitor, iberiotoxin (IbTx, 100 nM), also prevented NaHS-induced dilation and VSMC hyperpolarization but did not affect resting VSMC E m showing EC specific actions. Sharp electrode recordings in arteries cut open to expose EC demonstrated H 2 S-induced hyperpolarization of EC while Ca 2+ imaging studies in fluor-4 loaded EC showed that H 2 S increases EC Ca 2+ event frequency. Thus H 2 S can act directly on EC. Inhibiting the EC enzyme cytochrome P 450 2C (Cyp2C) with sulfaphenazole also prevented VSMC depolarization and vasodilation. Finally, inhibiting TRPV4 channels to block the target of the Cyp2C product 11,12-EET inhibited NaHS-induced dilation. Combined with our previous report that CSE inhibition decreases BK Ca currents in EC, these results suggest that H 2 S stimulates EC BK Ca channels and activates Cyp2C upstream of VSMC hyperpolarization and vasodilation.

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 89
Author(s):  
Risa Kudo ◽  
Katsuya Yuui ◽  
Shogo Kasuda

The vasorelaxant effect of polyphenols is well known, and the mortality rate due to coronary artery disease is low in people who consume polyphenol-containing foods. We aimed to elucidate the mechanism by which polyphenols derived from persimmon juice (PJ) and persimmon leaves (PLs) induce vasorelaxation and suppress vasocontraction in the superior mesenteric arteries isolated from male Sprague Dawley rats. Vasocontraction was induced with 1 µM phenylephrine, and polyphenol-induced vasorelaxation was expressed as a percentage of the previous tone induced by phenylephrine. PJ powder (100 mg/L) induced higher levels of vasorelaxation (mean ± standard error of the mean, 88.6% ± 4.4%) than PLs powder (1 g/L; 72.0% ± 10.8%). Nitric oxide pathway inhibitors (NG-nitro-L-arginine methyl ester + carboxy-PTIO) did not affect persimmon-derived polyphenol-induced vasorelaxation, whereas potassium chloride, tetraethylammonium, and potassium-channel inhibitors did. Vasorelaxation was endothelium independent with both extracts. Phenylephrine-induced vasocontraction was suppressed by pretreatment with PJ and PLs powder, even when inositol triphosphate-mediated Ca2+ release and extracellular Ca2+ influx were inhibited. These results suggest that persimmon-derived polyphenol phytocomplex cause vasorelaxation and inhibit vasocontraction through hyperpolarization of smooth muscle cells. Persimmon-derived polyphenols may be able to prevent cardiovascular diseases caused by abnormal contraction of blood vessels.


Metabolism ◽  
2005 ◽  
Vol 54 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Subramanyam N. Murthy ◽  
Demian F. Obregon ◽  
Natasha N. Chattergoon ◽  
Neil A. Fonseca ◽  
Debasis Mondal ◽  
...  

1995 ◽  
Vol 269 (2) ◽  
pp. L227-L233 ◽  
Author(s):  
J. L. Szarek ◽  
H. L. Ramsay ◽  
A. Andringa ◽  
M. L. Miller

The purpose of this study was to answer two questions concerning hyperoxia-induced airway hyperresponsiveness: 1) What is the time course of the development of airway hyperresponsiveness? 2) What is the relationship between the increase in responsiveness and smooth muscle area? Segments of intrapulmonary bronchi were isolated from male Sprague-Dawley rats that had been exposed to 80-85% O2 for a period of 1, 3, 5, or 7 days and from aged-matched control animals that breathed room air. Hyperoxia increased the sensitivity (log concentration or frequency that elicited a half-maximal response) and reactivity (maximum tension developed) of the airways to electrical field stimulation (EFS) after 3, 5, and 7 days; sensitivity to acetylcholine was not affected, but reactivity was increased after 7 days. Hyperoxia increased smooth muscle area beginning 5 days after commencing the exposure. After normalizing tension responses to smooth muscle area, reactivity of the airways to the stimuli was not different between the two groups, but sensitivity to EFS was still increased. The increase in reactivity observed after 5 and 7 days of exposure can be explained by an increase in smooth muscle area that occurred at these time points. The fact that the sensitivity of the airways to EFS remained increased after normalization, together with the fact that the increase in airway responsiveness after 3 days of exposure occurred at a time when smooth muscle area was not different from control, suggests that mechanisms other than increased smooth muscle area contribute to the development of hyperoxia-induced airway hyperresponsiveness.


2000 ◽  
Vol 22 (1) ◽  
pp. 71-84 ◽  
Author(s):  
David C Dorman ◽  
Karrie A Brenneman ◽  
Melanie F Struve ◽  
Kristin L Miller ◽  
R.Arden James ◽  
...  

1989 ◽  
Vol 257 (4) ◽  
pp. E547-E553 ◽  
Author(s):  
A. Geloen ◽  
P. E. Roy ◽  
L. J. Bukowiecki

The effects of long-term diabetes (4 wk) on the development of parametrial (PWAT) and retroperitoneal (RWAT) white adipose tissues were studied in young Sprague-Dawley rats (170-200 g) injected with a single dose of streptozotocin (75 mg/kg). Diabetes stopped animal growth and totally abolished the normal increases in the wet weight, total protein content, and cellularity (estimated by DNA content) of PWAT and RWAT. Remarkably, the prolonged lack of insulin induced a progressive decrease of the cellularity of RWAT to levels that were lower than those of the initial controls. It also resulted in a marked reduction of adipocyte size. The tiny adipocytes seen in diabetic animals were characterized by the presence of multilocular triglyceride droplets. In general, the decreases in cell number, cell size, and protein content were more pronounced in RWAT than in PWAT. Quantitative cellular frequency studies revealed that adipocytes, and possibly also endothelial cells, contribute to the decrease in RWAT cellularity. The results demonstrate that 1) diabetes inhibits proliferative activity in adipose tissue, 2) total cell number reduction may occur in adipose depot of young growing rats, 3) this effect is depot dependent, and 4) the turnover of adipocytes and endothelial cells is relatively slow (several weeks).


2005 ◽  
Vol 53 (5) ◽  
pp. 671-677 ◽  
Author(s):  
Chandikumar S. Elangbam ◽  
Ruth M. Lightfoot ◽  
Lawrence W. Yoon ◽  
Donald R. Creech ◽  
Robert S. Geske ◽  
...  

5-Hydroxytryptamine-2B receptor (5HT2BR) stimulation is known to cause fibroblast mitogenesis, and the mitogenic effect has been proposed to trigger valvular heart disease in humans. In this study, we used real-time polymerase chain reaction (TaqMan) to quantify transcript levels of 5HT2B, 5HT2C, and 5HT1B receptors and immunohistochemistry (IHC) to detect the tissue localization of these receptors in the normal heart valves of cynomolgus (CM) monkeys and Sprague-Dawley (S-D) rats. In both species, positive immunostaining was noted for 5HT1B and 5HT2B receptors in mitral, tricuspid, aortic, and pulmonary valves, and the cell types showing positive staining were interstitial cells and endothelial cells lining the valve leaflet. In CM monkeys, 5HT2CR was expressed only in the endothelial cells lining the leaflet, whereas S-D valves were negative for this receptor. IHC results were correlated with 5HT2B and 5HT1B receptor transcripts for all four valves. However, 5HT2C receptor transcripts were lower than 5HT2B or 5HT1B in all CM monkey valves, whereas 5HT2C transcripts were below the level of detection in any of the S-D rat valves. Our data showed the expression of 5HT2B, 5HT1B, and 5HT2C receptors in the normal heart valves of CM monkeys and S-D rats, and IHC and TaqMan techniques may be used to study the potential mechanism of compounds with 5HT2BR agonist activity.


2004 ◽  
Vol 287 (5) ◽  
pp. H2316-H2323 ◽  
Author(s):  
Youqin Cheng ◽  
Joseph Fomusi Ndisang ◽  
Guanghua Tang ◽  
Kun Cao ◽  
Rui Wang

Hydrogen sulfide (H2S) has been shown recently to function as an important gasotransmitter. The present study investigated the vascular effects of H2S, both exogenously applied and endogenously generated, on resistance mesenteric arteries of rats and the underlying mechanisms. Both H2S and NaHS evoked concentration-dependent relaxation of in vitro perfused rat mesenteric artery beds (MAB). The sensitivity of MAB to H2S (EC50, 25.2 ± 3.6 μM) was about fivefold higher than that of rat aortic tissues. Removal of endothelium or coapplication of charybdotoxin and apamin to endothelium-intact MAB significantly reduced the vasorelaxation effects of H2S. The H2S-induced relaxation of MAB was partially mediated by ATP-sensitive K+ (KATP) channel activity in vascular smooth muscle cells. Pinacidil (EC50, 1.7 ± 0.1 μM, n = 6) mimicked, but glibenclamide (10 μM, n = 6) suppressed, the vasorelaxant effect of H2S. KATP channel currents in isolated mesenteric artery smooth muscle cells were significantly augmented by H2S. l-Cysteine, a substrate of cystathionine-γ-lyase (CSE), at 1 mM increased endogenous H2S production by sixfold in rat mesenteric artery tissues and decreased contractility of MAB. dl-Propargylglycine (a blocker of CSE) at 10 μM abolished l-cysteine-dependent increase in H2S production and relaxation of MAB. Our results demonstrated a tissue-specific relaxant response of resistance arteries to H2S. The stimulation of KATP channels in vascular smooth muscle cells and charybdotoxin/apamin-sensitive K+ channels in vascular endothelium by H2S represents important cellular mechanisms for H2S effect on MAB. Our study also demonstrated that endogenous CSE can generate sufficient H2S from exogenous l-cysteine to cause vasodilation. Future studies are merited to investigate direct contribution of endogenous H2S to regulation of vascular tone.


2018 ◽  
Vol 19 (4) ◽  
pp. 1662-1671 ◽  
Author(s):  
Akshaya Tatke ◽  
Karthik Yadav Janga ◽  
Bharathi Avula ◽  
XiangDi Wang ◽  
Monica M. Jablonski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document