A Statistical Theory of Long-Term Potentiation and Depression

2001 ◽  
Vol 13 (1) ◽  
pp. 87-111 ◽  
Author(s):  
John M. Beggs

The synaptic phenomena of long-term potentiation (LTP) and long-term depression (LTD) have been intensively studied for over twenty-five years. Although many diverse aspects of these forms of plasticity have been observed, no single theory has offered a unifying explanation for them. Here, a statistical “bin” model is proposed to account for a variety of features observed in LTP and LTD experiments performed with field potentials in mammalian cortical slices. It is hypothesized that long-term synaptic changes will be induced when statistically unlikely conjunctions of pre- and postsynaptic activity occur. This hypothesis implies that finite changes in synaptic strength will be proportional to information transmitted by conjunctions and that excitatory synapses will obey a Hebbian rule (Hebb, 1949). Using only one set of constants, the bin model offers an explanation as to why synaptic strength decreases in a decelerating manner during LTD induction (Mulkey & Malenka, 1992); why the induction protocols for LTP and LTD are asymmetric (Dudek & Bear, 1992; Mulkey & Malenka, 1992); why stimulation over a range of frequencies produces a frequency-response curve similar to that proposed by the BCM theory (Bienenstock, Cooper, & Munro, 1982; Dudek & Bear, 1992); and why this curve would shift as postsynaptic activity is changed (Kirkwood, Rioult, & Bear, 1996). In addition, the bin model offers an alternative to the BCM theory by predicting that changes in postsynaptic activity will produce vertical shifts in the curve rather than merely horizontal shifts.

Physiology ◽  
1994 ◽  
Vol 9 (6) ◽  
pp. 256-260
Author(s):  
D Debanne ◽  
SM Thompson

Two opposing types of plasticity at excitatory synapses in the hippocampus, long-term potentiation and depression, require N-methyl-D-aspartate receptor activation and Ca2+ influx for their induction.The direction of the change in synaptic strength is determined by a balance between phosphorylation and dephosphorylation, as regulated by protein kinases and phosphatases that are activated selectively by different levels of intracellular Ca2+.


2008 ◽  
Vol 100 (5) ◽  
pp. 2605-2614 ◽  
Author(s):  
Therése Abrahamsson ◽  
Bengt Gustafsson ◽  
Eric Hanse

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) unsilencing is an often proposed expression mechanism both for developmental long-term potentiation (LTP), involved in circuitry refinement during brain development, and for mature LTP, involved in learning and memory. In the hippocampal CA3–CA1 connection naïve (nonstimulated) synapses are AMPA signaling and AMPA-silent synapses are created from naïve AMPA-signaling (AMPA-labile) synapses by test-pulse synaptic activation (AMPA silencing). To investigate to what extent LTPs at different developmental stages are explained by AMPA unsilencing, the amount of LTP obtained at these different developmental stages was related to the amount of AMPA silencing that preceded the induction of LTP. When examined in the second postnatal week Hebbian induction was found to produce no more stable potentiation than that causing a return to the naïve synaptic strength existing prior to the AMPA silencing. Moreover, in the absence of a preceding AMPA silencing Hebbian induction produced no stable potentiation above the naïve synaptic strength. Thus this early, or developmental, LTP is nothing more than an unsilencing (dedepression) and stabilization of the AMPA signaling that was lost by the prior AMPA silencing. This dedepression and stabilization of AMPA signaling was mimicked by the presence of the protein kinase A activator forskolin. As the relative degree of AMPA silencing decreased with development, LTP manifested itself more and more as a “genuine” potentiation (as opposed to a dedepression) not explained by unsilencing and stabilization of AMPA-labile synapses. This “genuine,” or mature, LTP rose from close to nothing of total LTP prior to postnatal day (P)13, to about 70% of total LTP at P16, and to about 90% of total LTP at P30. Developmental LTP, by stabilization of AMPA-labile synapses, thus seems adapted to select synaptic connections to the growing synaptic network. Mature LTP, by instead strengthening existing stable connections between cells, may then create functionally tightly connected cell assemblies within this network.


2020 ◽  
pp. 69-82
Author(s):  
Enikö A. Kramár

Estrogens are rapid and potent facilitators of synaptic plasticity in the adult brain; however, the steps that link estrogens to factors that regulate synaptic strength remain unclear. The present chapter will first review the acute effects of 17β‎-estradiol on synaptic transmission and long-term potentiation (LTP). It will then describe a synaptic model used to study the substrates of LTP and provide evidence for the ability of estradiol to rapidly engage a selective actin signaling cascade associated with the consolidation of LTP. Finally, it will be shown that chronic reductions in estradiol levels disrupt LTP and actin dynamics but can be reversed by acute infusions of the hormone. It is concluded here that estradiol can promote learning-related plasticity by modifying the synaptic cytoskeleton.


2019 ◽  
Vol 400 (9) ◽  
pp. 1129-1139 ◽  
Author(s):  
Iryna Hlushchenko ◽  
Pirta Hotulainen

Abstract Synaptic plasticity underlies central brain functions, such as learning. Ca2+ signaling is involved in both strengthening and weakening of synapses, but it is still unclear how one signal molecule can induce two opposite outcomes. By identifying molecules, which can distinguish between signaling leading to weakening or strengthening, we can improve our understanding of how synaptic plasticity is regulated. Here, we tested gelsolin’s response to the induction of chemical long-term potentiation (cLTP) or long-term depression (cLTD) in cultured rat hippocampal neurons. We show that gelsolin relocates from the dendritic shaft to dendritic spines upon cLTD induction while it did not show any relocalization upon cLTP induction. Dendritic spines are small actin-rich protrusions on dendrites, where LTD/LTP-responsive excitatory synapses are located. We propose that the LTD-induced modest – but relatively long-lasting – elevation of Ca2+ concentration increases the affinity of gelsolin to F-actin. As F-actin is enriched in dendritic spines, it is probable that increased affinity to F-actin induces the relocalization of gelsolin.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
F. Binda ◽  
K. Dorgans ◽  
S. Reibel ◽  
K. Sakimura ◽  
M. Kano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document