scholarly journals Representation, Control, or Reasoning? Distinct Functions for Theory of Mind within the Medial Prefrontal Cortex

2014 ◽  
Vol 26 (4) ◽  
pp. 683-698 ◽  
Author(s):  
Charlotte E. Hartwright ◽  
Ian A. Apperly ◽  
Peter C. Hansen

The medial pFC (mPFC) is frequently reported to play a central role in Theory of Mind (ToM). However, the contribution of this large cortical region in ToM is not well understood. Combining a novel behavioral task with fMRI, we sought to demonstrate functional divisions between dorsal and rostral mPFC. All conditions of the task required the representation of mental states (beliefs and desires). The level of demands on cognitive control (high vs. low) and the nature of the demands on reasoning (deductive vs. abductive) were varied orthogonally between conditions. Activation in dorsal mPFC was modulated by the need for control, whereas rostral mPFC was modulated by reasoning demands. These findings fit with previously suggested domain-general functions for different parts of mPFC and suggest that these functions are recruited selectively in the service of ToM.

2017 ◽  
Vol 81 (10) ◽  
pp. S215-S216
Author(s):  
Arron W.S. Metcalfe ◽  
Bradley J. MacIntosh ◽  
Alvi H. Islam ◽  
Henri J.M.M. Mutsaerts ◽  
Daphne Korczak ◽  
...  

2014 ◽  
Vol 274 ◽  
pp. 312-318 ◽  
Author(s):  
Tobias Schuwerk ◽  
Martin Schecklmann ◽  
Berthold Langguth ◽  
Katrin Döhnel ◽  
Beate Sodian ◽  
...  

2005 ◽  
Vol 17 (9) ◽  
pp. 1367-1375 ◽  
Author(s):  
Marcel Brass ◽  
Markus Ullsperger ◽  
Thomas R. Knoesche ◽  
D. Yves von Cramon ◽  
Natalie A. Phillips

Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.


2017 ◽  
Author(s):  
Yin Wang ◽  
Athanasia Metoki ◽  
Kylie H. Alm ◽  
Ingrid R. Olson

AbstractThere is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the “social brain”. Social neuroscience has traditionally focused its attention on functional response properties of these gray matter networks and neglected the vital role of white matter (WM) connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to the research on three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of WM pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion imaging data collection and analysis, and offer new directions for future research.AbbreviationsACCanterior cingulate cortexADaxial diffusivityAFarcuate fasciculusAIanterior insulaALSamyotrophic lateral sclerosisAMGamygdalaASDautism spectrum disordersATLanterior temporal lobeATRanterior thalamic radiationCCcorpus callosumCINGcingulum bundleCSTcortico-spinal tractDESdirect electrical stimulationdMPFCdorsal medial prefrontal cortexdMRIdiffusion-weighted MRIDPdevelopmental prosopagnosiaDTIdiffusion tensor imagingFAfractional anisotropyFFAfusiform face areaIFGinferior frontal gyrusIFOFinferior fronto-occipital fasciculusILFinferior longitudinal fasciculusIPLinferior parietal lobeMCImild cognitive impairmentMDmean diffusivityMPFCmedial prefrontal cortexMSmultiple sclerosisOFAoccipital face areaOFCorbitofrontal cortex face patchPCCposterior cingulate cortexPDParkinson’s diseasePPprogressive prosopagnosiaPreCprecuneusRDradial diffusivityROIregion-of-interestsMRIstructural MRISTSsuperior temporal sulcusTBSStract-based spatial statisticsToMTheory of MindTPJtemporo-parietal junctionUFuncinate fasciculusVBMvoxel based morphometryvMPFCventral medial prefrontal cortexWMwhite matter


2020 ◽  
Vol 10 (8) ◽  
pp. 535
Author(s):  
Birgitta Taylor-Lillquist ◽  
Vivek Kanpa ◽  
Maya Crawford ◽  
Mehdi El Filali ◽  
Julia Oakes ◽  
...  

Humans employ a number of strategies to improve their position in their given social hierarchy. Overclaiming involves presenting oneself as having more knowledge than one actually possesses, and it is typically invoked to increase one’s social standing. If increased expectations to possess knowledge is a perceived social pressure, such expectations should increase bouts of overclaiming. As the medial prefrontal cortex (MPFC) is sensitive to social pressure and disruption of the MPFC leads to decreases in overclaiming, we predicted that transcranial magnetic stimulation (TMS) applied to the MPFC would reduce overclaiming and the effects would be enhanced in the presence of social pressure. Twelve participants were given a test in which half of the words were real and half were fake, and they were asked how well they knew each word. They were not told that any of the words were fake. Half of the participants were exposed to social pressure while the other half were not. Following TMS delivered to the MPFC, overclaiming rates decreased, specifically under conditions of high social pressure. Medial PFC TMS did not influence real word responses and real words did not interact with the MPFC and social pressure. These preliminary findings support the significant role the MPFC plays in social cognition and the importance of the MPFC in mediating socially meaningful situations. We suggest the role of the MPFC as being highly influenced by the premium placed on social manipulation in human evolution.


2019 ◽  
Vol 22 (10) ◽  
pp. 675-679 ◽  
Author(s):  
Jiancheng Zhang ◽  
Youge Qu ◽  
Lijia Chang ◽  
Yaoyu Pu ◽  
Kenji Hashimoto

Abstract Background A recent study demonstrated that spine formation rates by ketamine in the prefrontal cortex (PFC) were not altered at 3–6 h following a single injection, but were markedly altered at 12–24 h. Here, we investigated the acute (3 h post-treatment) effects of (R)-ketamine in the decreased spine density in the medial PFC (mPFC) and hippocampus in susceptible mice after chronic social defeat stress (CSDS). Methods (R)-ketamine (10 mg/kg) or saline was administered intraperitoneally to CSDS-susceptible mice. Dendritic spine density in the mPFC and hippocampus was measured 3 h after a single injection. Results (R)-ketamine significantly ameliorated the decreased spine density in the prelimbic area of mPFC, Cornu Ammonis3, and dentate gyrus of the hippocampus of CSDS-susceptible mice Conclusions This study suggests that (R)-ketamine rapidly ameliorates the decreased spine density in the mPFC and hippocampus of CSDS-susceptible mice, resulting in its rapid-acting antidepressant effects.


2019 ◽  
Vol 51 (9) ◽  
pp. 432-442 ◽  
Author(s):  
Pan Xu ◽  
Ai Chen ◽  
Yipeng Li ◽  
Xuezhi Xing ◽  
Hui Lu

The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer’s disease, Parkinson’s disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.


2018 ◽  
Vol 1678 ◽  
pp. 419-431 ◽  
Author(s):  
Huijun Zhong ◽  
Jie Dang ◽  
Zhenghao Huo ◽  
Zhanbing Ma ◽  
Jing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document