scholarly journals On Known Unknowns: Fluency and the Neural Mechanisms of Illusory Truth

2016 ◽  
Vol 28 (5) ◽  
pp. 739-746 ◽  
Author(s):  
Wei-Chun Wang ◽  
Nadia M. Brashier ◽  
Erik A. Wing ◽  
Elizabeth J. Marsh ◽  
Roberto Cabeza

The “illusory truth” effect refers to the phenomenon whereby repetition of a statement increases its likelihood of being judged true. This phenomenon has important implications for how we come to believe oft-repeated information that may be misleading or unknown. Behavioral evidence indicates that fluency, the subjective ease experienced while processing information, underlies this effect. This suggests that illusory truth should be mediated by brain regions previously linked to fluency, such as the perirhinal cortex (PRC). To investigate this possibility, we scanned participants with fMRI while they rated the truth of unknown statements, half of which were presented earlier (i.e., repeated). The only brain region that showed an interaction between repetition and ratings of perceived truth was PRC, where activity increased with truth ratings for repeated, but not for new, statements. This finding supports the hypothesis that illusory truth is mediated by a fluency mechanism and further strengthens the link between PRC and fluency.

2011 ◽  
Author(s):  
Scott Wright ◽  
Xiaoning Guo ◽  
Drew Brown ◽  
Chris Manolis ◽  
John Dinsmore ◽  
...  

2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


NeuroImage ◽  
2004 ◽  
Vol 22 (4) ◽  
pp. 1492-1502 ◽  
Author(s):  
L.A Dade ◽  
F.Q Gao ◽  
N Kovacevic ◽  
P Roy ◽  
C Rockel ◽  
...  

2007 ◽  
Vol 362 (1481) ◽  
pp. 761-772 ◽  
Author(s):  
Mark D'Esposito

Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.


1989 ◽  
Vol 155 (S7) ◽  
pp. 93-98 ◽  
Author(s):  
Nancy C. Andreasen

When Kraepelin originally defined and described dementia praecox, he assumed that it was due to some type of neural mechanism. He hypothesised that abnormalities could occur in a variety of brain regions, including the prefrontal, auditory, and language regions of the cortex. Many members of his department, including Alzheimer and Nissl, were actively involved in the search for the neuropathological lesions that would characterise schizophrenia. Although Kraepelin did not use the term ‘negative symptoms', he describes them comprehensively and states explicitly that he believes the symptoms of schizophrenia can be explained in terms of brain dysfunction:“If it should be confirmed that the disease attacks by preference the frontal areas of the brain, the central convolutions and central lobes, this distribution would in a certain measure agree with our present views about the site of the psychic mechanisms which are principally injured by the disease. On various grounds, it is easy to believe that the frontal cortex, which is specially well developed in man, stands in closer relation to his higher intellectual abilities, and these are the faculties which in our patients invariably suffer profound loss in contrast to memory and acquired ability.” Kraepelin (1919, p. 219)


2011 ◽  
Vol 5 (4) ◽  
pp. 310-321
Author(s):  
Eduardo Moreira de Oliveira ◽  
Priscilla Tiemi Kissaki ◽  
Tiago Nascimento Ordonez ◽  
Thaís Bento Lima-Silva

Abstract A systematic review of the neuroanatomical literature was performed to determine the neuropharmacological aspects most relevant to the study of memory processes. Articles were retrieved using the search terms "biology of memory", "memory and aging", "memory impairment", "elderly and memory," and their equivalents in Portuguese. Of the studies surveyed, five studies dealt with epidemiological and demographic issues, 12 were clinical trials i.e. were based on testing and implementation of instruments in human subjects, 33 studies were basic research involving studies of mice, rats and non-human primates, and biochemical and in vitro trials and finally, 52 studies were literature reviews or book chapters which in our view, fell into this category. Conclusions: The work sought to highlight which neural networks are most involved in processing information, as well as their location within brain regions and the way in which neurotransmitters interact with each other for the formation of these memories. Moreover, it was shown how memory changes during the normal human aging process, both positively and negatively, by analyzing the morphological alterations that occur in the brain of aging individuals.


2021 ◽  
Author(s):  
Erika L. Schumacher ◽  
Bruce A. Carlson

AbstractBrain region size generally scales allometrically with total brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual brain regions independent of brain size, which suggests that selection can impact structural brain composition to favor specific regions involved in novel behaviors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hao-Yu Wang ◽  
Chun-Fang Li ◽  
Chao Yu ◽  
Ji Dong ◽  
Yong Zou ◽  
...  

Abstract Accurate dosimetry of a specific brain region in rats exposed to an electromagnetic field (EMF) is essential for studies focusing on dose-effect relationship of the region. However, only dosimetry of whole brain or whole body were evaluated in most of previous studies. In this study, a numerical voxel rat model with 10 segmented brain regions was constructed. Then, the effects of frequency, incidence direction, and E-polarization direction of plane wave EMF on brain region averaged specific absorption rate (BRSAR) of rats were investigated. At last, the reliability of using whole-body averaged SAR (WBDSAR) and whole-brain averaged SAR (WBRSAR) as estimations of BRSAR were also evaluated. Our results demonstrated that the BRSAR depended on the frequency, incidence direction, and E-polarization direction of the EMF. Besides, the largest deviation could be up to 13.1 dB between BRSAR and WBDSAR and 9.59 dB between BRSAR and WBRSAR. The results suggested that to establish an accurate dose-effect relationship, the variance of the BRSAR induced by alteration of frequency, incidence direction, and E-polarization direction of EMF should be avoided or carefully evaluated. Furthermore, the use of WBDSAR and WBRSAR as estimations of BRSAR should be restricted to certain conditions such that the deviations are not too large.


Sign in / Sign up

Export Citation Format

Share Document