HighlightsNARX and LSTM recurrent neural networks were evaluated for prediction of irrigation prescriptions.LSTM neural networks presented the best performance for irrigation scheduling using soil matric potential sensors.NARX neural networks had the best performance for predicting irrigation prescriptions using weather data.High performance for several time-ahead predictions using both recurrent neural networks, with R2 > 0.94.The results can be adopted as a decision-support tool in irrigation scheduling for fields with different types of soils.Abstract. The implementation of adequate irrigation strategies could be done through real-time monitoring of soil water status at several soil depths; however, this could also represent a complex nonlinear problem due to the plant-soil-weather relationships. In this study, two recurrent neural network (RNN) models were evaluated to estimate irrigation prescriptions. Data for this study were collected from an on-farm corn irrigation study conducted between 2017 and 2019 in Samson, Alabama. The study used hourly data of weather and soil matric potential (SMP) monitored at three soil depths from 13 sensor probes installed on a loamy fine sand soil and a sandy clay loam soil. Two neural network methods, i.e., a nonlinear autoregressive with exogenous (NARX) input system and long short-term memory (LSTM), were trained, validated, and tested with a maximum dataset of 20,052 records and a maximum of eight categorical attributes to estimate one-step irrigation prescriptions. The performance of both methods was evaluated by varying the model development parameters (neurons or blocks, dropout, and epochs) and determining their impact on the final model prediction. Results showed that both RNN models demonstrated good capability in the prediction of irrigation prescriptions for the soil types studied, with a coefficient of determination (R2) > 0.94 and root mean square error (RMSE) < 1.2 mm. The results of this study indicate that after training the RNNs using the dataset collected in the field, models using only SMP sensors at three soil depths obtained the best performance, followed by models that used only data of solar radiation, temperature, and relative humidity in the prediction of irrigation prescriptions. For future applicability, the RNN models can be extended using datasets from other places for training, which would allow the adoption of a unique data-driven soil moisture model for irrigation scheduling useful in a wide range of soil types. Keywords: Corn, Irrigation scheduling, Machine learning, Modeling, Soil matric potential sensor.