The broad-snouted caiman population recovery in Argentina. A case of genetics conservation

2017 ◽  
Vol 38 (4) ◽  
pp. 411-424 ◽  
Author(s):  
Patricia Susana Amavet ◽  
Eva Carolina Rueda ◽  
Juan César Vilardi ◽  
Pablo Siroski ◽  
Alejandro Larriera ◽  
...  

Caiman latirostriswild populations have suffered a drastic reduction in the past, and for that reason, a management and monitoring plan was applied since 1990 in Santa Fe, Argentina in order to achieve population recovery. Although ranching system has a noteworthy success in terms of population size recovering, there is no information about the estimation of population genetic parameters. In particular, the consequence of the bottleneck underwent by these populations has not been assessed. We evaluated variability and genetic structure ofC. latirostrispopulations from Santa Fe through time, using microsatellites and mitochondrial DNA. Population genetic parameters were compared among four sites and three different periods to assess the impact of management activities, and effective population size was estimated in order to detect bottleneck events. We observed an increase in microsatellite variability and low genetic variability in mitochondrial lineages through time. Variability estimates are similar among sites in each sampling period; and there is scarce differentiation among them. The genetic background of each sampling site has changed through time; we assume this fact may be due to entry of individuals of different origin, through management and repopulation activities. Moreover, taking into account the expected heterozygosity and effective population size values, it can be assumed that bottleneck events indeed have occurred in the recent past. Our results suggest that, in addition to increasing population size, genetic variability of the species has been maintained. However, the information is still incomplete, and regular monitoring should continue in order to arrive to solid conclusions.

2022 ◽  
Vol 52 (5) ◽  
Author(s):  
Joel Domínguez-Viveros ◽  
Antonio Reyes-Cerón ◽  
Juan Fernando Saiz-Pineda ◽  
Cesar Villegas-Gutiérrez ◽  
Guadalupe Nelson Aguilar-Palma ◽  
...  

ABSTRACT: This study analyzed the Sardo Negro breed pedigree (41,521 animals registered from 1958 to 2019) to determine its structure, evolution, and genetic variability (GV). The population genetic parameters evaluated were effective number of founders (fe) and ancestors (fa), pedigree integrity, additive genetic relationship (AGR); number of complete generations (NCG), maximum generations traced (NMGT), and equivalent complete generations (NECG); effective population size (Ne), inbreeding coefficient (F), and generation interval (GI). The average GI was 7.45 years. A total of 7,804 founders and 4,856 ancestors were identified for a fe of 185 and a fa of 97. The average and maximum values of NCG, NECG, and NMGT were 1.6 and 5.0, 2.5 and 6.5, 4.3 and 12, with Ne estimates of 15.9, 25.9, and 69.0, respectively. The increase in F, linked to Ne, ranged from 0.72% to 3.1% per generation. The average values for F and AGR were 3.6% and 1.0%, respectively. The proportion of inbred individuals was 32.0%, with F values ranging from 0.01 to 62.2% and an average of 11.3%. The rate of inbred population was 1.3% per year. The annual rate of AGR was 0.04%. For the continuity and projection of the breed, the evolution of F as a function of Ne and the possible implications of the selection schemes must be considered. The genetic variability sustained over time results from the Ne.


2011 ◽  
Vol 54 (1) ◽  
pp. 1-9
Author(s):  
L. Vostrý ◽  
Z. Čapková ◽  
J. Přibyl ◽  
B. Hofmanová ◽  
H. Vostrá Vydrová ◽  
...  

Abstract. In order to estimate effective population size, generation interval and the development of inbreeding coefficients (Fx) in three original breeds of cold-blooded horses kept in the Czech Republic: Silesian Noriker (SN), Noriker (N) and Czech-Moravian Belgian horse (CMB) all animals of the particular breeds born from 1990 to 2007 were analysed. The average values of generation interval between parents and their offspring were: 8.53 in SN, 8.88 in N and 8.56 in CMB. Average values of effective population size were estimated to be: 86.3 in SN, 162.3 in N and 104.4 in CMB. The average values of inbreeding coefficient were 3.13 % in SN stallions and 3.39 % in SN mares, in the N breed 1.76 % and 1.26 % and in the CMB breed 3.84 % and 3.26 % respectively. Overall averages of Fx were: 3.23 %, 1.51 % and 3.55 % for the breeds SN, N and CMB. The average value of inbreeding coefficient Fx increased by 1.22 % in SN, by 0.35 % in N and by 1.01 % in CMB, respectively. This may lead to a reduction in genetic variability. Reduction in genetic variability could be either controlled in cooperation with corresponding populations of cold-blooded breeds in other European countries or controlled by number of sires used in population


Genetics ◽  
1977 ◽  
Vol 86 (3) ◽  
pp. 697-713
Author(s):  
C Chevalet ◽  
M Gillois ◽  
R F Nassar

ABSTRACT Properties of identity relation between genes are discussed, and a derivation of recurrent equations of identity coefficients in a random mating, diploid dioecious population is presented. Computations are run by repeated matrix multiplication. Results show that for effective population size (Ne) larger than 16 and no mutation, a given identity coefficient at any time t can be expressed approximately as a function of (1—f), (1—f)3 and (1—f)6, where f is the mean inbreeding coefficient at time t. Tables are presented, for small Ne values and extreme sex ratios, showing the pattern of change in the identity coefficients over time. The pattern of evolution of identity coefficients is also presented and discussed with respect to N eu, where u is the mutation rate. Applications of these results to the evolution of genetic variability within and between inbred lines are discussed.


1984 ◽  
Vol 44 (3) ◽  
pp. 321-341 ◽  
Author(s):  
P. J. Avery

SUMMARYFrom the available electrophoretic data, it is clear that haplodiploid insects have a much lower level of genetic variability than diploid insects, a difference that is only partially explained by the social structure of some haplodiploid species. The data comparing X-linked genes and autosomal genes in the same species is much more sparse and little can be inferred from it. This data is compared with theoretical analyses of X-linked genes and genes in haplodiploids. (The theoretical population genetics of X-linked genes and genes in haplodiploids are identical.) X-linked genes under directional selection will be lost or fixed more quickly than autosomal genes as selection acts more directly on X-linked genes and the effective population size is smaller. However, deleterious disease genes, maintained by mutation pressure, will give higher disease incidences at X-linked loci and hence rare mutants are easier to detect at X-linked loci. Considering the forces which can maintain balanced polymorphisms, there are much stronger restrictions on the fitness parameters at X-linked loci than at autosomal loci if genetic variability is to be maintained, and thus fewer polymorphic loci are to be expected on the X-chromosome and in haplodiploids. However, the mutation-random drift hypothesis also leads to the expectation of lower heterozygosity due to the decrease in effective population size. Thus the theoretical results fit in with the data but it is still subject to argument whether selection or mutation-random drift are maintaining most of the genetic variability at X-linked genes and genes in haplodiploids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Om P. Rajora ◽  
John W. R. Zinck

Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.


2020 ◽  
Vol 12 (4) ◽  
pp. 443-455
Author(s):  
Michael Lynch ◽  
Wei-Chin Ho

Abstract The ability to obtain genome-wide sequences of very large numbers of individuals from natural populations raises questions about optimal sampling designs and the limits to extracting information on key population-genetic parameters from temporal-survey data. Methods are introduced for evaluating whether observed temporal fluctuations in allele frequencies are consistent with the hypothesis of random genetic drift, and expressions for the expected sampling variances for the relevant statistics are given in terms of sample sizes and numbers. Estimation methods and aspects of statistical reliability are also presented for the mean and temporal variance of selection coefficients. For nucleotide sites that pass the test of neutrality, the current effective population size can be estimated by a method of moments, and expressions for its sampling variance provide insight into the degree to which such methodology can yield meaningful results under alternative sampling schemes. Finally, some caveats are raised regarding the use of the temporal covariance of allele-frequency change to infer selection. Taken together, these results provide a statistical view of the limits to population-genetic inference in even the simplest case of a closed population.


Sign in / Sign up

Export Citation Format

Share Document