Nematicidal activity of essential oil components against the root-knot nematode Meloidogyne javanica

Nematology ◽  
2001 ◽  
Vol 3 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Yuji Oka

AbstractNematicidal activity of eight essential oil components; trans -anethole, anis alcohol, p-anisaldehyde, benzaldehyde, 4-methoxyphenol, trans-cinnamaldehyde, (R)-(+)-pulegone, 2-furaldehyde, and a non-essential oil component anisole, was tested against the root-knot nematode Meloidogyne javanica in solutions in 200-ml and 3-l pots and in microplots. Among the anisole derivatives, p-anisaldehyde showed the highest nematicidal activity in solutions and in soil. However, trans-cinnamaldehyde, 2-furaldehyde and benzaldehyde showed higher nematicidal activity than p-anisaldehyde in the 3-l pot experiments. EC50 values of trans-cinnamaldehyde for juvenile immobilisation and hatching inhibition in vitro were as low as 15 and 11.3 μl/l, respectively. In the 3-l pot experiments, trans-cinnamaldehyde, 2-furaldehyde, benzaldehyde and carvacrol at a concentration of 100 mg/kg greatly reduced the root galling of tomato, whereas trans-anethole was not effective. In a microplot experiment, soil treatment with trans-cinnamaldehyde (50 ml/m2) reduced the galling index and increased the shoot weight of tomato plants. Although further experiments, such as development of formulations and application methods, are needed, some essential oil components, especially aldehydes, can be developed into lowtoxicity nematicides.

2010 ◽  
Vol 100 (2) ◽  
pp. 199-203 ◽  
Author(s):  
Sergio Echeverrigaray ◽  
Jucimar Zacaria ◽  
Ricardo Beltrão

Nematicidal activity of 22 monoterpenoids were evaluated in vitro and in pot experiments. Twenty of the twenty-two monoterpenoids significantly reduced hatching, and 11 reduced J2 mobility of the root-knot nematode Meloidogyne incognita at a concentration of 250 mg/liter. In general, compounds with hydroxyl and carbonyl groups exhibited higher nematicidal activity than other terpenoids. Borneol, carveol, citral, geraniol, and α-terpineol showed the highest nematicidal activity among the in vitro tested monoterpenoids. These compounds exhibited a dose dependent effect, and drastically reduced eggs hatching and J2 viability at low concentrations. These monoterpenoids, at 100 and 250 mg/kg concentration, diminished root galling of tomato plants in pot experiments. The results suggest that the selected monoterpenoids, and essential oils with high concentration of these compounds, are potential nematicides against Meloidogyne.


Nematology ◽  
2002 ◽  
Vol 4 (8) ◽  
pp. 891-898 ◽  
Author(s):  
Yuji Oka ◽  
Uri Yermiyahu

AbstractSuppressive effects of two composts, from cattle manure and grape marc, on the root-knot nematode Meloidogyne javanica were tested in pot and in vitro experiments. No root galls were found on tomato roots grown in soils containing 10 or 25% (v/v) cattle manure compost, and very few on those grown in 50% grape marc compost. Significant reductions in galling index were also found on tomato plants grown in soils containing lower concentrations of this compost. Chemical analysis of the composts and leachates from the soils showed that the cattle manure compost had higher electrical conductivity (EC) and higher concentrations of nitrogen, especially N–NH4, than the grape marc compost. Water extract of the cattle manure compost showed high nematicidal activity to the nematode juveniles and less activity toward the eggs in vitro. Water extract of the grape marc compost showed weaker nematicidal activity to the juveniles and eggs. Washing composted soils with excess water before nematode inoculation and tomato planting led to better plant growth, but the nematode-suppressive effect was decreased. These results suggest that high nitrogen concentrations, especially N–NH4, and high EC values contribute to the nematode suppressiveness of the composts.


Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 545-555 ◽  
Author(s):  
Yong Seong Lee ◽  
Muhammad Anees ◽  
Hae Nam Hyun ◽  
Kil Yong Kim

Lysobacter antibioticus HS124 is an antagonistic bacterial strain that was previously isolated from the rhizosphere soil of pepper and showed an enhanced ability to produce lytic enzymes as well as an antibiotic that was identified as 4-hydroxyphenylacetic acid (4-HPAA). In the present study, nematicidal activity of the strain and 4-HPAA against the root-knot nematode, Meloidogyne incognita, causing disease in tomato was investigated in both in vitro and in vivo conditions. For this purpose, adding different concentrations of culture filtrate, crude extract collected from extraction with ethyl acetate and 4-HPAA, in 24-well plates containing ca 500 eggs or 300 second-stage juveniles (J2), significantly decreased the rate of nematode hatch and caused higher mortality of J2 compared with the control treatments. Nematicidal activity of the bacterial strain was further confirmed by conducting pot experiments in which tomato plants were inoculated with M. incognita and the HS124 culture (BC). The control pots were treated with commercial nematicide (CN, 5% Ethoprophos), tap water (TW) or the non-inoculated bacterial culture medium (BCM). In these pot experiments, results demonstrated a strong antagonistic potential of L. antibioticus HS124 against M. incognita where the disease was significantly reduced in the pots treated with BC as compared to TW or BCM. Furthermore, the shoot fresh weight was also increased significantly, which may be attributed to the disease control ability of the strain. Hence, L. antibioticus HS124 may be further developed as a potential biocontrol of root knot nematode in the field.


2015 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Josilda CA Damasceno ◽  
Ana CF Soares ◽  
Fábio N Jesus ◽  
Rosane S Sant'Ana

The effect of sisal liquid residue (fresh and fermented) was evaluated in controlling the root-knot nematode (Meloidogyne javanica) in tomato plants. Bioassays were conducted in vitro with 100 µL of an aqueous suspension containing 300 juveniles (J2) of M. javanica and 1000 µL of sisal liquid residue. The treatments consisted of nematode immersion for 24 and 48 hours in sisal liquid residue, fresh or fermented, diluted in water to the final concentrations of 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20%, and nematicide Carbofuran at 350 mg of the active ingredient per liter. Under greenhouse conditions, 4000 juveniles of M. javanica were inoculated on tomato plants grown in pots, and after one week, 100 mL of sisal liquid residue at concentrations of 0, 4, 8, 12, 16 and 20%, were added to soil around the tomato plants. Control treatments received either 100 mL of distilled water or 0.5 g of Carbofuran per pot. Forty days after inoculation, plants were harvested and evaluated for plant growth and root damage. In addition, the selective effect of sisal liquid residue on growth of beneficial soil microorganisms was evaluated. All concentrations of sisal liquid residue presented nematicidal effect, after 48 h of nematode exposure. A mortality rate of 100% was obtained for M. javanica juveniles exposed to liquid residue at a concentration of 20%. Application of increasing concentrations of both sisal liquid residues reduced the number of galls and egg masses per plant and per gram of roots, as well as the final population of M. javanica in soil. Growth of beneficial soil microorganisms was observed in soil amended with sisal fresh liquid residue, for all concentrations tested. The fermented residue caused inhibition of soil beneficial microorganisms. Future studies should be conducted to test the nematicidal effect on tomato plants under field conditions.


2000 ◽  
Vol 90 (7) ◽  
pp. 710-715 ◽  
Author(s):  
Yuji Oka ◽  
Sengul Nacar ◽  
Eli Putievsky ◽  
Uzi Ravid ◽  
Zohara Yaniv ◽  
...  

Nematicidal activity of essential oils extracted from 27 spices and aromatic plants were evaluated in vitro and in pot experiments. Twelve of the twenty-seven essential oils immobilized more than 80% of juveniles of the root-knot nematode Meloidogyne javanica at a concentration of 1,000 μl/liter. At this concentration, most of these oils also inhibited nematode hatching. Essential oils of Carum carvi, Foeniculum vulgare, Mentha rotundifolia, and Mentha spicata showed the highest nematicidal activity among the in vitro tested oils. These oils and those from Origanum vulgare, O. syriacum, and Coridothymus capitatus mixed in sandy soil at concentrations of 100 and 200 mg/kg reduced the root galling of cucumber seedlings in pot experiments. The main components of these essential oils were tested for their nematicidal activity. Carvacrol, t-anethole, thymol, and (+)-carvone immobilized the juveniles and inhibited hatching at >125 μl/liter in vitro. Most of these components mixed in sandy soil at concentrations of 75 and 150 mg/kg reduced root galling of cucumber seedlings. In 3-liter pot experiments, nematicidal activity of the essential oils and their components was confirmed at 200 and 150 mg/kg, respectively. The results suggest that the essential oils and their main components may serve as nematicides.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mahsa Rostami ◽  
Akbar Karegar ◽  
S. Mohsen Taghavi

Abstract Background Root-knot nematodes (Meloidogyne spp.) are the most destructive agricultural pests, which parasitize thousands of different plant species in the world. Using antagonistic bacteria can be a potential alternative to hazardous chemical nematicides. This study was conducted to evaluate the biocontrol activities of the bacteria isolated from vermicompost and earthworm against M. javanica in infected tomato plants. Results Seventeen bacteria were isolated from vermicompost and earthworm. Their antagonistic effects were tested against the root-knot nematode M. javanica in laboratory and in glasshouse experiments. In the preliminary screening test, 8 bacterial isolates significantly caused more than 50% decrease in reproduction factor (Rf) of the nematode on tomato plants. Six isolates with more than 60% reduction in the nematode Rf were selected and identified as follows: Lysinibacillus fusiformis C1, Bacillus megaterium C3, B. safensis VW3, Pseudomonas resinovorans VW4, Lysinibacillus sp. VW6, and Sphingobacterium daejeonense LV1 by 16S rRNA gene sequencing. The isolates B. megaterium C3, B. safensis VW3, P. resinovorans VW4, and L. fusiformis C1 inhibited the nematode egg hatching by 20–28%, and Lysinibacillus sp. VW6 and L. fusiformis C1 caused 15 and 20% mortality of the second-stage juveniles in vitro. In a glasshouse, the 6 bacterial isolates reduced the nematode Rf by 47–66%, and P. resinovorans VW4 was the most effective isolate. However, B. safensis VW3, B. megaterium C3, and L. fusiformis C1 had the best effect on plant growth. Conclusions Most of the bacteria isolated from earthworm or vermicompost had nematicidal properties. This study provided empirical evidence of the nematicidal potential of isolates Lysinibacillus fusiformis C1, Pseudomonas resinovorans VW4, and Sphingobacterium daejeonense LV1 and the antagonistic activities of Bacillus megaterium C3 and B. safensis VW3 against Meloidogyne javanica.


LWT ◽  
2021 ◽  
pp. 111881
Author(s):  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Alberto Gonçalves Evangelista ◽  
Anne Caroline Schoch Marques Pinto ◽  
Renata Ernlund Freitas de Macedo ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
Author(s):  
I Gede Swibawa I Gede ◽  
YUYUN FITRIANA ◽  
SOLIKHIN ◽  
RADIX SUHARJO ◽  
F.X. SUSILO ◽  
...  

Abstract. Swibawa IG, Fitriana Y, Solikhin, Suharjo R, Susilo FX, Rani E, Haryani MS, Wardana RA. 2020. Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas 21: 1108-1115. This study aimed to obtain and discover the identity of the species of fungal egg parasites of root-knot nematodes (RKN), which have a high pathogenic ability causing major losses in vegetable crops. The exploration of the fungi was carried out in 2016 and 2018 from Crystal guava plantations in East Lampung, Central Lampung, Tanggamus, and NirAma, a commercial product that has been used for controlling Meloidogyne sp. in Indonesia. Identification was carried out based on morphological characteristics and molecular-based gene sequential analysis of Intergenic Transcribed Spacer (ITS) 1 and ITS 4. A pathogenicity test was carried out in vitro and in a greenhouse using tomato plants as indicator plants. In the in vitro test, observations were made on the percentage of infected RKN eggs. The observations in the greenhouse test were carried out on RKN populations in the soil and roots of tomato plants, root damage (root knots), and damage intensity due to RKN infection. The exploration resulted in five isolates of fungal egg parasites of RKN from the guava plantations in East Lampung (2), Central Lampung (1), Tanggamus (1), and from the isolation results of commercial products (1). The isolates were given codes as B4120X (PT GGP PG1), B3010 (PT GGP PG4), B412G (PT GGP PG 4), B01TG (Tanggamus), and BioP (Commercial products). Based on their morphological characteristics, the isolates were classified into the genus of Paecilomyces. The results of molecular identification showed that the discovered fungi were Purpureocillium lilacinum (Thom.) Luangsa Ard. (Syn. Paecilomyces lilacinus (Thom.) Samson.). Based on the in vitro tests, the five fungal isolates were able to parasitize RKN eggs at 86.4-100%. In the greenhouse test, all isolates significantly suppressed nematode populations in the soil and tomato roots, inhibited the formation of root knots, and produced lower damage intensity compared to controls. Among all the isolates tested, B01TG had the best ability to infect nematode eggs (99.5%), suppressing the formation of root knots, nematode population in the soil and the roots of tomato plants, and the damage intensity compared to other isolates.


2020 ◽  
Vol 56 (No. 3) ◽  
pp. 191-196
Author(s):  
Kahkashan Perveen ◽  
Najat A. Bokhari

The essential oil obtained by the hydro-distillation of the leaves of Mentha arvensis Linnaeus was evaluated for its antifungal activity against the causal agent of the Alternaria blight of tomatoes, i.e., Alternaria alternata (Fries) Keissler. The antifungal activity of the mentha essential oil was assessed both in vitro and in vivo. The chemical composition of the mentha oil was also identified by GCMS analysis. The in vitro test revealed that the maximum inhibition in the mycelial growth (93.6%) and conidia germination (90.6%) was at the highest concentration (40 µL/mL), furthermore, it was found that the inhibition of the mycelial growth and conidia germination was dose dependent. The in vivo test proved that the application of the mentha essential oil (40 µL/mL) significantly increased the plant height (84.6%), fresh weight (81.5%) and dry weight (80.0%) when compared to the untreated tomato plants. The disease incidence was 3.5 in the untreated plants, while it was 0.93 for the mentha essential oil treated plants and was 0.08 in the carbendazim treated plants. The GC-MS analysis of the mentha essential oil identified 18 compounds in total, among which the percentage of menthol was the highest (69.2%). The mentha essential oil was successful in managing the Alternaria leaf blight in the tomato plants. Therefore, it can be explored further for the development of a natural fungicide.


Sign in / Sign up

Export Citation Format

Share Document