Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule

2018 ◽  
Vol 68 (2) ◽  
pp. 113-128 ◽  
Author(s):  
Qiao Liu ◽  
Hao Feng ◽  
Long Jin ◽  
Zhi Ping Mi ◽  
Zhao Min Zhou ◽  
...  

AbstractBergmann’s rule states that within a species of endotherms smaller individuals are found in warmer conditions, which is consistent for nearly all endotherms, while in ectotherms body size patterns are less consistent. As ectothermic vertebrates, the morphology of amphibians is likely impacted by climatic conditions. Here, we examined latitudinal variation in body size in the ranid frog,Fejervarya limnocharis, based on literature and our own data on mean body size of 3637 individuals from 50 populations and average age of 2873 individuals from 40 populations in China. The results showed that body size was positively correlated with environmental temperature, but not with precipitation. Body size was negatively correlated with latitude among populations in this species, which supported the inverse of Bergmann’s rule. Our findings suggest that a larger body size in low-latitude populations is associated with a longer growing season related to the higher environmental temperature.

2002 ◽  
Vol 80 (4) ◽  
pp. 708-716 ◽  
Author(s):  
Kyle G Ashton

It is not clear whether Bergmann's rule, larger size within species in cooler areas, holds for any group of ectotherms. Data are presented and used to test whether amphibians show body-size patterns that follow Bergmann's rule. Available data with respect to latitude and elevation suggest that amphibians in general follow Bergmann's rule, with 23 of 34 species showing a larger body size at higher latitudes or elevations and an overall grand mean correlation coefficient of +0.35 for size with latitude or elevation. Salamanders show body-size patterns consistent with the overall trend, with 13 of 18 species having a larger body size at higher latitudes or elevations and a grand mean correlation coefficient of +0.42 for size with latitude or elevation. Anurans show a weaker trend towards concordance with Bergmann's rule with respect to latitude and elevation (10 of 16 species), but the grand mean correlation coefficient is significantly positive (+0.31). The relationship between body size and environmental temperature is less clear. Overall, amphibians show weak concordance with Bergmann's rule (9 of 16 species). The results of the only two studies of salamanders are consistent with Bergmann's rule; however, data for anurans show no trend (7 of 14 species in accordance). Thus, while salamanders appear to follow Bergmann's rule, any trends in anurans are tentative.


2020 ◽  
Vol 98 (2) ◽  
pp. 88-95 ◽  
Author(s):  
Laura C. Gigliotti ◽  
Nathan D. Berg ◽  
Rudy Boonstra ◽  
Shawn M. Cleveland ◽  
Duane R. Diefenbach ◽  
...  

The relationship between body size and latitude has been the focus of dozens of studies across many species. However, results of testing Bergmann’s rule — that organisms in colder climates or at higher latitudes possess larger body sizes — have been inconsistent across studies. We investigated whether snowshoe hares (Lepus americanus Erxleben, 1777) follow Bergmann’s rule by investigating differences in body mass using data from six published studies and from data of 755 individual hares captured from 10 populations across North America covering 26° of north latitude. We also explored alternative hypotheses related to variation in hare body mass, including winter severity, length of growing season, elevation, and snow depth. We found body mass of hares varied throughout their range, but the drivers of body mass differed based on geographic location. In northern populations, females followed Bergmann’s rule, whereas males did not. In northern populations, male mass was related to mean snow depth. In contrast, in southern populations, body mass of both sexes was related to length of the growing season. These differences likely represent variation in the drivers of selection. Specifically, in the north, a large body size is beneficial to conserve heat because of low winter temperatures, whereas in the south, it is likely due to increased food supply associated with longer growing seasons.


Paleobiology ◽  
10.1666/13006 ◽  
2013 ◽  
Vol 39 (4) ◽  
pp. 648-661 ◽  
Author(s):  
John D. Orcutt ◽  
Samantha S. B. Hopkins

Whether or not climate plays a causal role in mammal body-size evolution is one of the longest-standing debates in ecology. Bergmann's Rule, the longest-standing modeladdressing this topic, posits that geographic body-mass patterns are driven by temperature, whereas subsequent research has suggested that other ecological variables, particularly precipitation and seasonality, may be the major drivers of body-size evolution. While paleoecological data provide a unique and crucial perspective on this debate, paleontological tests of Bergmann's rule and its corollaries have been scarce. We present a study of body-size evolution in three ecologically distinct families of mammal (equids, canids, and sciurids) during the Oligo-Miocene of the northwest United States, an ideal natural laboratory for such studies because of its rich fossil and paleoclimatic records. Body-size trends are different in all three groups, and in no case is a significant relationship observed between body size and any climatic variable, counter to what has been observed in modern ecosystems. We suggest that for most of the Cenozoic, at least in the Northwest, body mass has not been driven by any one climatic factor but instead has been the product of complex interactions between organisms and their environments, though the nature of these interactions varies from taxon to taxon. The relationship that exists between climate and body size in many groups of modern mammals, therefore, is the exception to the rule and may be the product of an exceptionally cool and volatile global climate. As anthropogenic global warming continues and ushers in climatic conditions more comparable to earlier intervals of the Cenozoic than to the modern day, models of corresponding biotic variables such as body size may lose predictive power if they do not incorporate paleoecological data.


2018 ◽  
Vol 44 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Susana Pallarés ◽  
Michele Lai ◽  
Pedro Abellán ◽  
Ignacio Ribera ◽  
David Sánchez-Fernández

Paleobiology ◽  
2016 ◽  
Vol 42 (4) ◽  
pp. 643-658
Author(s):  
John D. Orcutt ◽  
Samantha S. B. Hopkins

AbstractPaleecological data allow not only the study of trends along deep-time chronological transects but can also be used to reconstruct ecological gradients through time, which can help identify causal factors that may be strongly correlated in modern ecosystems. We have applied such an analysis to Bergmann’s rule, which posits a causal relationship between temperature and body size in mammals. Bergmann’s rule predicts that latitudinal gradients should exist during any interval of time, with larger taxa toward the poles and smaller taxa toward the equator. It also predicts that the strength of these gradients should vary with time, becoming weaker during warmer periods and stronger during colder conditions. We tested these predictions by reconstructing body-mass trends within canid and equid genera at different intervals of the Oligo-Miocene along the West Coast of North America. To allow for comparisons with modern taxa, body mass was reconstructed along the same transect for modernCanisandOdocoileus. Of the 17 fossil genera analyzed, only two showed the expected positive relationship with latitude, nor was there consistent evidence for a relationship between paleotemperature and body mass. Likewise, the strength of body-size gradients does not change predictably with climate through time. The evidence for clear gradients is ambiguous even in the modern genera analyzed. These results suggest that, counter to Bergmann’s rule, temperature alone is not a primary driver of body size and underscore the importance of regional-scale paleoecological analyses in identifying such drivers.


2014 ◽  
Vol 9 (12) ◽  
pp. 1147-1154 ◽  
Author(s):  
Linas Balčiauskas ◽  
Laima Balčiauskienė ◽  
Uudo Timm

AbstractThe body size of Palearctic Sorex shrews decreases at higher latitudes, and as such the Bergmann’s rule does not work. However, no analysis has ever been done for water shrew (Neomys fodiens) in the middle of distribution range. Analysis of available literature data showed that some body and skull measurements of N. fodiens are negatively correlated to latitude. Measurements of 158 water shrews from Estonia and Lithuania were also analyzed with respect to the short scale latitudinal pattern. We found that populations are separated (Wilk’s lambda = 0.363, p<0.0001). Differences are related to PC1 (skull size), explaining 49.80% of the variance and PC2 (body size), explaining 10.06% of the variance. Estonian shrews are smaller in their body and skull (most differences significant) and their skulls are relatively shorter and wider in the area of the brain case. Thus, the negative correlation of body and skull size to latitude in N. fodiens is applicable even over quite short latitudinal distances. Further analysis of diagnostic characters between N. fodiens and N. anomalus is required.


2010 ◽  
Vol 13 (4) ◽  
pp. 421-431 ◽  
Author(s):  
Simon Blanchet ◽  
Gael Grenouillet ◽  
Olivier Beauchard ◽  
Pablo A. Tedesco ◽  
Fabien Leprieur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document