scholarly journals Physical constraints of bath treatments of Atlantic salmon (Salmo salar) with a sea lice burden (Copepoda: Caligidae)

2000 ◽  
Vol 69 (1-2) ◽  
pp. 129-136 ◽  
Author(s):  
James W. Treasure ◽  
Andrew Gran ◽  
Paul J. Davi

Licensed medicines available in the U.K. for treating Atlantic salmon infested with sea lice, dichlorvos, azamethiphos, and hydrogen peroxide, can only be administered by bath application. Adverse reactions have been reported to bath treatments including mortalities, inappetance, reduction in growth and reduced louse sensitivity to dichlorvos. The physical constraints of bath treatments are examined and improvements recommended. Oxygen saturation was adequate during treatments but declined rapidly when the tarpaulin was removed. A chemical marker dispersed uniformally both horizontally and vertically in a cage within 5 mins of dispensing indicating dispersal of a medicine is rapid and adequate during treatment. The range in enclosed volumes in 86 treatments was 46 to 146% of theoretical, suggesting potential toxicity due to high concentrations at low volumes and the risk of reduced sensitivity at high volumes. Residual concentrations of hydrogen peroxide varied from 50 to 400 ppm from 5 to 15 mins after the tarpaulin was removed. Water exchange should be encouraged by aerating the cage and flushing at the end of treatment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Cáceres ◽  
Agustín Barría ◽  
Kris A. Christensen ◽  
Liane N. Bassini ◽  
Katharina Correa ◽  
...  

AbstractSea lice (Caligus rogercresseyi) is an ectoparasite which causes major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The objectives of this study were to: (1) identify genomic regions associated with resistance to Caligus rogercresseyi in Atlantic salmon and rainbow trout by performing single-step Genome-Wide Association studies (ssGWAS), and (2) identify candidate genes related to trait variation based on exploring orthologous genes within the associated regions across species. A total of 2626 Atlantic salmon and 2643 rainbow trout were challenged and genotyped with 50 K and 57 K SNP panels, respectively. We ran two independent ssGWAS for sea lice resistance on each species and identified 7 and 13 regions explaining more than 1% of the genetic variance for the trait, with the most important regions explaining 3% and 2.7% for Atlantic salmon and rainbow trout, respectively. We identified genes associated with immune response, cytoskeleton function, and cell migration when focusing on important genomic regions for each species. Moreover, we found 15 common orthogroups which were present in more than one associated genomic region, within- or between-species; however, only one orthogroup showed a clear potential biological relevance in the response against sea lice. For instance, dual-specificity protein phosphatase 10-like (dusp10) and dual-specificity protein phosphatase 8 (dusp8) were found in genomic regions associated with lice density in Atlantic salmon and rainbow trout, respectively. Dusp10 and dusp8 are modulators of the MAPK pathway and might be involved in the differences of the inflammation response between lice resistant and susceptible fish from both species. Our results provide further knowledge on candidate genes related to sea lice resistance and may help establish better control for sea lice in fish populations.


1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


2015 ◽  
Vol 47 (1) ◽  
pp. 450-460 ◽  
Author(s):  
Gustavo Núñez-Acuña ◽  
Ana Teresa Gonçalves ◽  
Valentina Valenzuela-Muñoz ◽  
Jorge Pino-Marambio ◽  
Simon Wadsworth ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Carolina Figueroa ◽  
Paulina Bustos ◽  
Débora Torrealba ◽  
Brian Dixon ◽  
Carlos Soto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document