scholarly journals The evolutionary history of the white wagtail species complex, (Passeriformes: Motacillidae: Motacilla alba)

2019 ◽  
Vol 88 (3) ◽  
pp. 257-276
Author(s):  
Maliheh Pirayesh Shirazinejad ◽  
Mansour Aliabadian ◽  
Omid Mirshamsi

The white wagtail (Motacilla alba) species complex with its distinctive plumage in separate geographical areas can serve as a model to test evolutionary hypotheses. Its extensive variety in plumage, despite the genetic similarity between taxa, and the evolutionary events connected to this variety are poorly understood. Therefore we sampled in the breeding range of the white wagtail: 338 individuals were analyzed from 74 areas in the Palearctic and Mediterranean. We studied the white wagtail complex based on two mitochondrial DNA markers to make inferences about the evolutionary history. Our phylogenetic trees highlight mtDNA sequences (ND2, CR), and one nuclear marker (CHD1Z), which partly correspond to earlier described clades: the northern Palearctic (clade N); eastern and central Asia (clade SE); south-western Asia west to the British Isles (clade SW); and Morocco (clade M). The divergence of all clades occurred during the Pleistocene. We also used ecological niche modelling for three genetic lineages (excluding clade M); results showed congruence between niche and phylogenetic divergence in these clades. The results of the white wagtail ancestral area reconstruction showed the influence of dispersal on the distribution and divergence of this complex species. The most important vicariance event for the white wagtail complex may have been caused by the Gobi and Taklamakan deserts. We conclude that the ancestral area of the white wagtail complex was probably in the Mediterranean, with its geography having a considerable effect on speciation processes.

2019 ◽  
Vol 58 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Joachim Langeneck ◽  
Fabio Scarpa ◽  
Ferruccio Maltagliati ◽  
Daria Sanna ◽  
Michele Barbieri ◽  
...  

2018 ◽  
Vol 94 ◽  
Author(s):  
C.D. Pinacho-Pinacho ◽  
A.L. Sereno-Uribe ◽  
M. García-Varela ◽  
G. Pérez-Ponce de León

Abstract Neoechinorhynchus is one of the most speciose genera of acanthocephalans, with approximately 116 described species. A recent study, aimed at establishing the genetic diversity of Neoechinorhynchus in Middle American freshwater fishes, validated nine species molecularly and morphologically and revealed the existence of 10 putative candidate species. Neoechinorhynchus golvani, a parasite commonly found in cichlids throughout Middle America with an allegedly large intraspecific morphological variability, was found to represent a species complex; species delimitation methods uncovered three additional genetic lineages. Here, we re-analyse the morphological and molecular data for N. golvani species complex infecting cichlids in that geographical area. A multivariate analysis of variance (MANOVA) was conducted particularly for the length of apical, middle and posterior hooks of the species/lineages of Neoechinorhynchus in cichlids, revealing morphological variation in the length of apical hooks for Lineage 8, although no morphological distinction was observed for Lineages 9 and 10. A new concatenated phylogenetic analysis of one mitochondrial and two ribosomal DNA genes was used to further corroborate the species delimitation among lineages; Neoechinorhynchus Lineage 8 was found to be morphologically and genetically distinct from its sister taxa, N. golvani and other two undescribed genetic lineages, and is formally described as a new species. Neoechinorhynchus costarricense n. sp. is described from the intestines of eight species of cichlids in Costa Rica. The new species is distinguished from the other species/lineages of Neoechinorhynchus in cichlids mainly by the size of the apical hooks of the proboscis.


Author(s):  
Roxanne Albertha Charles

Abstract The sand tampan, Ornithodoros savignyi (Audouin, 1827), is an economically important soft tick of the Afrotropics parasitising a wide range of livestock and humans. These ticks are known to inflict painful bites which may be fatal in susceptible hosts. Historically thought to be a single species, Ornithodoros savignyi is now considered to be a complex of four tick subspecies based on molecular and morphological studies. They include Ornithodoros (Ornithodoros) kalahariensis, O. (O.) pavimentosus, O. (O.) noorsveldensis and O. (O.) savignyi. As such there may be significant implications for previous biological studies conducted on this tick. Therefore, for the purposes of this review, sand tampan toxicosis and potentially useful biological molecules have been discussed for O. (O.) savignyi sensu lato since most reported work was based on ticks collected from the Kalahari and Lake Chad region. An overview of the host range and vector biology for the O. (O.) savignyi species complex will also be examined.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


Zootaxa ◽  
2012 ◽  
Vol 3277 (1) ◽  
pp. 43 ◽  
Author(s):  
STEVEN L. POWERS ◽  
BERNARD R. KUHAJDA ◽  
SARAH E. AHLBRAND

We examined geographic variation within the Ashy Darter, Etheostoma cinereum, of the mitochondrially enconded cyto-chrome b gene (cyt b) and nuclear recombination activation gene 1 (RAG1) as well as pigmentation, 6 meristic variables,and 20 morphometric variables for patterns indicative of speciation within the complex. Four geographically disjunct en-tities were identified by at least one of the datasets corresponding to the Cumberland, Duck, Elk, and upper Tennesseeriver systems. Monophyly of cyt b and RAG1 sequences, modal meristic differences, moderate morphometric divergence,and unique pigmentation in specimens from the Cumberland River suggest this entity represents an evolutionary speciesunder many different species concepts and is described herein as Etheostoma maydeni. Other populations exhibit varyingdegrees of divergence in the different datasets and have conflicting relationships in phylogenetic analyses using cyt b andRAG1 sequences, leaving the evolutionary history and taxonomic status of the Duck, Elk and upper Tennessee populations unclear.


2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Demian F Gomez ◽  
James Skelton ◽  
M Sedonia Steininger ◽  
Richard Stouthamer ◽  
Paul Rugman-Jones ◽  
...  

Abstract The ambrosia beetle Euwallacea fornicatus Eichhoff sensu lato is a complex of genetically divergent emerging pests responsible for damages to tree industries and ecosystems around the world. All lineages within the species complex are currently considered morphologically identical, presenting problems for their delineation and highlighting the shortcomings of species concepts based solely on type-specimen morphology. The objectives of this work were to 1) broaden the geographic sampling of the E. fornicatus complex in Asia, 2) reconstruct relationships between clades and populations, 3) find morphological characters or combinations of characters which are useful in delimiting the genetic lineages of the E. fornicatus species complex, and 4) propose taxonomic delimitation of species where morphology and phylogenetic identity correlate. Our integrated approach using molecular and morphological evidence suggests four clades that differ morphologically, but with overlap, therefore, cytochrome oxidase c subunit I (COI) barcoding remains necessary for assigning specimens to a clade. The following taxonomic changes are proposed: E. fornicatus (Eichhoff 1868) (= ‘Tea Shot Hole Borer Clade a’); E. fornicatior (Eggers 1923), stat. rev. (= ‘Tea Shot Hole Borer Clade b’); E. whitfordiodendrus (Schedl 1942), stat. rev. (= ‘Polyphagous Shot Hole Borer’); and E. kuroshio Gomez and Hulcr, sp. nov. (= ‘Kuroshio Shot Hole Borer’). This approach delivers a practical, evidence-based guidance for species delineation that can address overlapping variation in morphological characters of an emerging pest species complex.


Zootaxa ◽  
2019 ◽  
Vol 4623 (3) ◽  
pp. 441-484
Author(s):  
SABINE MELZER ◽  
ROD A. HITCHMOUGH ◽  
TRENT BELL ◽  
DAVID G. CHAPPLE ◽  
GEOFF B. PATTERSON

New Zealand has a diverse skink fauna, comprising 45 described native species, and at least 15 undescribed taxa, within the single genus Oligosoma Girard, 1857. One of the earliest described, and best known, species is the speckled skink, Oligosoma infrapunctatum (Boulenger 1887). Despite a relatively stable taxonomic history for nearly 114 years, recent molecular work has indicated that O. infrapunctatum represents a species complex, comprising numerous genetically divergent, range restricted taxa. We completed the first stage of a taxonomic revision of O. infrapunctatum, conducting a morphological re-evaluation of existing voucher material, and newly collected specimens, and generated a molecular phylogeny for the species complex. This allowed us to distinguish six species: O. infrapunctatum, two species resurrected from synonymy (O. newmani, O. robinsoni), and three new species (O. salmo sp. nov., O. albornense sp. nov. O. auroraensis sp. nov.). The name bearing type population of O. infrapunctatum has not been located again for at least 130 years: it remains to be rediscovered and may already be extinct. Two of the six species here are considered ‘Nationally Critical’ (O. albornense sp. nov., O. salmo sp. nov.) under the New Zealand Threat Classification System, the others are Nationally Vulnerable (O. auroraensis sp. nov.) and At Risk—Relict (O. newmani, O. robinsoni). Further taxonomic work will be required to determine the taxonomy of other speckled skink genetic lineages in the South Island, particularly O. aff. infrapunctatum “cobble”, O. “Hokitika”, O. “Southern North Island” and O. “Westport”. 


2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


Genome ◽  
1996 ◽  
Vol 39 (5) ◽  
pp. 874-883 ◽  
Author(s):  
Nikolas Nikolaidis ◽  
Zacharias G. Scouras

Mitochondrial DNA (mtDNA) restriction site maps for three Drosophila montium subgroup species of the melanogaster species group, inhabiting Indian and Afrotropical montium subgroup territories, were established. Taking into account previous mtDNA data concerning six oriental montium species, a phylogeny was established using distance-matrix and parsimony methods. Both genetic diversity and mtDNA size variations were found to be very narrow, suggesting close phylogenetic relationships among all montium species studied. The phylogenetic trees that were constructed revealed three main lineages for the montium subgroup species studied: one consisting of the Afrotropical species Drosophila seguyi, which is placed distantly from the other species, one comprising the north-oriental (Palearctic) species, and one comprising the southwestern (south-oriental, Australasian, Indian, and Afrotropical) species. The combination of the mtDNA data presented here with data from other species belonging to the melanogaster and obscura subgroups revealed two major clusters: melanogaster and obscura. The melanogaster cluster is further divided into two compact lineages, comprising the montium subgroup species and the melanogaster complex species; the species of the other complex of the melanogaster subgroup, yakuba, disperse among the obscura species. The above grouping is in agreement with the mtDNA size variations of the species. Overall, among all subgroups studied, the species of the montium subgroup seem to be the most closely related. Key words : mtDNA restriction site maps, mtDNA size variations, Drosophila, phylogeny.


2005 ◽  
Vol 26 (4) ◽  
pp. 467-473 ◽  
Author(s):  
José Jesus ◽  
D. James Harris ◽  
António Brehm

AbstractRelationships of Mabuya lizards from the islands of the Gulf of Guinea where estimated using partial 12S rRNA, 16S rRNA and cytochrome b mitochondrial gene sequences. Mabuya maculilabris from São Tomé and Principe are discreet monophyletic units, highly divergent from each other and from mainland populations, indicating M. maculilabris may be a species complex. Mabuya affinis from Principe is similarly distinct from mainland populations of this species. The relationships of Mabuya ozorii from Annobon are unclear, but the three species in the Gulf of Guinea islands are not closely related, indicating multiple independent colonization events. The recent proposal to partition Mabuya into four genera is premature, since at least five distinct genetic lineages can be identified.


Sign in / Sign up

Export Citation Format

Share Document