Transport Of Water As A Structurally Sensitive Process Characterizing The Morphology Of Biodegradable Polymer Systems

Author(s):  
A.L. Iordanskii ◽  
Yu.N. Pankova ◽  
R.Yu. Kosenko ◽  
A.A. Ol'Khov ◽  
G.E. Zaikov
2017 ◽  
Vol 15 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Francesco Paolo La Mantia ◽  
Manuela Ceraulo ◽  
Maria Chiara Mistretta ◽  
Marco Morreale

Purpose Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Methods Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. Results and conclusions It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Francesco Paolo La Mantia ◽  
Manuela Ceraulo ◽  
Paolo Testa ◽  
Marco Morreale

It is well known that the need for more environmentally friendly materials concerns, among other fields, the food packaging industry. This regards also, for instance, nets used for agricultural product (e.g., citrus fruits, potatoes) packaging. These nets are typically manufactured by film blowing technique, with subsequent slicing of the films and cold drawing of the obtained strips, made from traditional, non-biodegradable polymer systems. In this work, two biodegradable polymer systems were characterized from rheological, processability, and mechanical points of view, in order to evaluate their suitability to replace polyethylene-based polymer systems typically used for agricultural product net manufacturing. Furthermore, laboratory simulation of the above-mentioned processing operation paths was performed. The results indicated a good potential for biodegradable polymer systems to replace polyethylene-based systems for agricultural product packaging.


Sign in / Sign up

Export Citation Format

Share Document