Reduced Expression of Endothelial Nitric Oxide Synthase in Pulmonary Arteries of Smokers

2001 ◽  
Vol 164 (4) ◽  
pp. 709-713 ◽  
Author(s):  
JOAN A. BARBERÀ ◽  
VICTOR I. PEINADO ◽  
SALUD SANTOS ◽  
JOSEP RAMIREZ ◽  
JOSEP ROCA ◽  
...  
1999 ◽  
Vol 277 (1) ◽  
pp. H371-H379
Author(s):  
Judy L. Aschner ◽  
Nora Kovacs ◽  
James V. Perciaccante ◽  
Jorge P. Figueroa ◽  
Nishadi Thrikawala ◽  
...  

We determined the expression and functional correlate of in vitro transfection with a recombinant adenoviral vector encoding the gene for bovine endothelial nitric oxide synthase (AdCMVeNOS) or Escherichia coliβ-galactosidase (AdCMVLacZ) in pulmonary endothelial cells (EC), vascular smooth muscle cells (VSMC), and pulmonary arteries (PA) from newborn piglets. AdCMVeNOS and AdCMVeLacZ vectors, grown in 293-cell monolayers, were purified by double-cesium gradient ultracentrifugation. Cell cultures and PA were incubated with increasing vector titers for 30 or 60 min, followed by incubation in fresh medium for 18 h at 37°C. LacZ expression was assessed by histochemical staining; eNOS expression was evaluated by Western blot analysis. Functional eNOS expression was determined by measurement of cGMP and quantification of the relaxation response to bradykinin (BK). In PA, LacZ transgene expression was preferentially localized to the adventitia and endothelium. Increased eNOS protein expression was observed in EC and VSMC transfected with AdCMVeNOS. Functional studies revealed increased cGMP abundance in cultured cells and enhanced relaxation to BK in AdCMVeNOS-transfected PA. These studies demonstrate that gene transfer with AdCMVeNOS results in functional expression and altered vasoactive responses in the neonatal pulmonary vasculature. Gene transfer with replication-deficient adenovirus vectors is a useful tool for the study of targeted genes in vascular biology.


1994 ◽  
Vol 267 (5) ◽  
pp. L585-L591 ◽  
Author(s):  
A. C. Halbower ◽  
R. M. Tuder ◽  
W. A. Franklin ◽  
J. S. Pollock ◽  
U. Forstermann ◽  
...  

It is unknown whether high fetal pulmonary vascular tone is due in part to absent or decreased endothelial nitric oxide synthase (eNOS), the enzyme that produces nitric oxide in the vascular endothelium. To determine the timing of appearance and maturational changes of eNOS in the developing pulmonary circulation, we performed immunohistochemistry in lungs from fetal, neonatal, and adult sheep. Using a mouse monoclonal antibody against bovine aortic eNOS, we found immunoreactive eNOS selectively in the endothelium and it was present at all fetal ages. Immunoreactivity was seen as early as 29% gestation in the developing capillaries coursing through fetal mesenchyme. By 6 days after birth, immunoreactivity was decreased in most vessels and nearly absent in the distal pulmonary arteries of adult animals. We conclude that immunoreactive eNOS is present very early in fetal life and appears to decrease postnatally. We speculate that the early presence of eNOS in the fetal lung supports a possible role for endogenous nitric oxide activity in the regulation of vascular tone or angiogenesis in the developing pulmonary circulation.


2009 ◽  
Vol 297 (6) ◽  
pp. L1170-L1178 ◽  
Author(s):  
J. Belik ◽  
M. Jerkic ◽  
B. A. S. McIntyre ◽  
J. Pan ◽  
J. Leen ◽  
...  

Endoglin is a TGF-β superfamily receptor critical for endothelial cell function. Mutations in this gene are associated with hereditary hemorrhagic telangiectasia type I (HHT1), and clinical signs of disease are generally more evident later in life. We previously showed that systemic vessels of adult Eng heterozygous ( Eng+/−) mice exhibit increased vasorelaxation due to uncoupling of endothelial nitric oxide synthase (eNOS). We postulated that these changes may develop with age and evaluated pulmonary arteries from newborn and adult Eng+/− mice for eNOS-dependent, acetylcholine (ACh-induced) vasorelaxation, compared with that of age-matched littermate controls. While ACh-induced vasorelaxation was similar in all newborn mice, it was significantly increased in the adult Eng+/− vs. control vessels. The vasodilatory responses were inhibited by l-NAME suggesting eNOS dependence. eNOS uncoupling was observed in lung tissues of adult, but not newborn, heterozygous mice and was associated with increased production of reactive O2 species (ROS) in adult Eng +/− vs. control lungs. Interestingly, ROS generation was higher in adult than newborn mice and so were the levels of NADPH oxidase 4 and SOD 1, 2, 3 isoforms. However, enzyme protein levels and NADPH activity were normal in adult Eng+/− lungs indicating that the developmental maturation of ROS generation and scavenging cannot account for the increased vasodilatation observed in adult Eng+/− mice. Our data suggest that eNOS-dependent H2O2 generation in Eng+/− lungs accounts for the heightened pulmonary vasorelaxation. To the extent that these mice mimic human HHT1, age-associated pulmonary vascular eNOS uncoupling may explain the late childhood and adult onset of clinical lung manifestations.


2015 ◽  
Vol 309 (9) ◽  
pp. L1009-L1017 ◽  
Author(s):  
Girija G. Konduri ◽  
Adeleye J. Afolayan ◽  
Annie Eis ◽  
Kirkwood A. Pritchard ◽  
Ru-Jeng Teng

An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pulmonary arteries from 137-day gestation fetal lambs (term = 144 days). We exposed PAEC to a simulated transition from fetal to (3% O2) to normoxic (21%) or hyperoxic (95% O2) postnatal Po2 or to the nitric oxide synthase (NOS) agonist ATP. We assessed the effect of O2 and ATP on eNOS interactions with the mitochondrial outer membrane protein porin and with the chaperone hsp90. We also investigated the effect of decoy peptides that blocked eNOS interactions with porin or hsp90 on PAEC angiogenesis and vasodilator function of pulmonary arteries. Transition of fetal PAEC from 3 to 21% O2 but not to 95% O2 or exposure to ATP increased eNOS association with hsp90 and porin. Decoy peptides that blocked eNOS interactions decreased NO release, increased O2 consumption and mitochondrial ROS levels, and impaired PAEC angiogenesis. Decoy peptides also inhibited the relaxation responses of pulmonary artery rings and dilation of resistance size pulmonary arteries to ATP. The mitochondrial-antioxidant mito-ubiquinone restored the response to ATP in decoy peptide-treated pulmonary arteries. These data indicate that targeting eNOS to mitochondria decreases endothelial oxidative stress and facilitates vasodilation in fetal pulmonary circulation at birth.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Sign in / Sign up

Export Citation Format

Share Document