Ab-Initio Study of Structural and Electronic Properties of ZnxTey (x + y = 2 to 5) Nanoclusters

2020 ◽  
Vol 12 (7) ◽  
pp. 930-938
Author(s):  
D. K. Pandey ◽  
P. S. Yadav

An ab initio study has been performed for the stability, structural and electronic properties of forty-four ZnxTey (x + y = p = 2 to 5) nanoclusters by employing B3LYP-DFT/LANL2DZ method. The zero-point energy correction is also considered in this study. For a particular configuration, the nanoclusters containing a large number of Te atoms are found the most stable structure in comparison with the other nanoclusters. The most stable nanoclusters have either linear or planer structures and, only Zn4Te configuration has no stable structure as the structures of this configuration have at least one imaginary vibrational frequency. The HOMO–LUMO gap of the most stable structure shows a zigzag variation with the increase in the number of atoms in the nanocluster. The observed enhancement trend of the HOMO–LUMO gap with a decrease in the size of the nanocluster confirms to the quantum-confinement effect. The ionization potential (IP) shows decreasing behavior with an increase in the number of atoms in nanoclusters and the variation of electron affinity (EA) with nanocluster size shows zig-zag behavior.

2013 ◽  
Vol 650 ◽  
pp. 29-33 ◽  
Author(s):  
D.K. Pandey ◽  
P.S. Yadav ◽  
S. Agrawal ◽  
B.K. Agrawal

An ab initio B3LYP-DFT/6-311G(3df) study has been performed for the stability, structural and electronic properties of forty ZnmOn(m + n = p = 2 to 4) nanoclusters. We also consider the zero point energy correction. The nanoclusters containing large number of strongly electronegative O atoms for p = 3 and 4 are found to be most stable as compared to the other nanoclusters of the same configuration. The most stable clusters have linear or planer structures and not the three dimensional ones. The observed trend of decrease of the HOMO-LUMO gap with the size of the nanocluster is in conformity with the quantum confined behavior.


2020 ◽  
Author(s):  
Sarvesh Kumar Gupta ◽  
Jyoti Singh ◽  
Shivani Gupta ◽  
Abhishek Kumar Gupta

2011 ◽  
Vol 10 (01n02) ◽  
pp. 341-344
Author(s):  
P. S. YADAV ◽  
D. K. PANDEY ◽  
S. AGRAWAL ◽  
B. K. AGRAWAL

The stability, structural, electronic, and optical properties have been studied for most stable zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 4). A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries, and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO–LUMO gaps and the bond lengths have been obtained for all the clusters. We have considered also the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charge on atoms, dipole moment, and optical properties have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each "n" are found to be most stable. Except for ZnS nanocluster, the HOMO–LUMO gap increases with the number of S atoms. Similarly, except for ZnS , IP and EA fluctuate with the cluster size but reveal downward trend. The optical absorption is quite weak in visible region but is strong in the ultraviolet region in most of the nanoclusters except a few. The growth of most stable nanoclusters may be possible in the experiments.


Sign in / Sign up

Export Citation Format

Share Document