Amphotericin B-Loaded Nanocarriers for Topical Treatment of Cutaneous Leishmaniasis: Development, Characterization, and In Vitro Skin Permeation Studies

2012 ◽  
Vol 8 (2) ◽  
pp. 322-329 ◽  
Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 149 ◽  
Author(s):  
Diana Berenguer ◽  
Maria Magdalena Alcover ◽  
Marcella Sessa ◽  
Lyda Halbaut ◽  
Carme Guillén ◽  
...  

Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of two months, with optimal properties for topical use and no apparent toxic effect on the cell lines. High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57 ± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel, the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore a candidate for further studies of in vivo efficacy.


2004 ◽  
Vol 30 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Luciana S. Ferreira ◽  
Gilson A. Ramaldes ◽  
Elzíria A. Nunan ◽  
Lucas A. M. Ferreira

2008 ◽  
Vol 52 (10) ◽  
pp. 3633-3636 ◽  
Author(s):  
T. J. Karpanen ◽  
T. Worthington ◽  
B. R. Conway ◽  
A. C. Hilton ◽  
T. S. J. Elliott ◽  
...  

ABSTRACT This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.


Author(s):  
Daniel Vardy ◽  
Yechezkel Barenholz ◽  
Natalia Naftoliev ◽  
Sidney Klaus ◽  
Leon Gilead ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The aims of the present study were to develop different matrix patches with various ratios of hydrophilic and hydrophobic polymer combinations such as ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) and eudragit RL 100 (ERL) and eudragit RS 100 (ERS) containing ethinylestradiol and medroxyprogesterone acetate and to perform physicochemical characterization and in vitro permeation studies through rat skin.Methods: Six formulations (F1 to F6) were developed by varying the concentration of both hydrophilic and hydrophobic polymer and keeping the drug load constant. Physical parameters and drug excipient interaction studies were evaluated in all the formulations. In vitro, skin permeation profiles of ethinylestradiol and medroxyprogesterone acetate from various formulations were simultaneously characterized in a thermostatically controlled modified Franz Diffusion cell. The physicochemical compatibility of the drug and the polymers was studied by differential scanning calorimetry.Results: The results suggested no physicochemical incompatibility between the drug and the polymers. In vitro permeation studies were performed by using Franz diffusion cells, patches coded as F3 (ethyl cellulose: polyvinylpyrrolidone, 7.5:2.5) and F6 (eudragit RL 100 (ERL) and eudragit RS 100 (ERS), 8:2) can be chosen for further in vivo studies. The results followed Higuchi kinetics (r = 0.9953-0.9979), and the mechanism of release was diffusion mediated. Based on physicochemical and in vitro skin permeation studies of 85.64% (for F3) and 88.62% (for F6) of ethinylestradiol and medroxyprogesterone acetate.Conclusion: The developed transdermal patches are stable, non-irritating and had increased efficacy of ethinylestradiol and medroxyprogesterone acetate and therefore had a good potential for antifertility treatment.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 200 ◽  
Author(s):  
Francisco Alexandrino-Junior ◽  
Kattya Gyselle de Holanda e Silva ◽  
Marjorie Caroline Liberato Cavalcanti Freire ◽  
Viviane de Oliveira Freitas Lione ◽  
Elisama Azevedo Cardoso ◽  
...  

Cutaneous leishmaniasis (CL) is a parasitic disease characterized by progressive skin sores. Currently, treatments for CL are limited to parenteral administration of the drug, which presents severe adverse effects and low cure rates. Therefore, this study aimed to develop poly(vinyl-alcohol) (PVA) hydrogels containing Amphotericin B (AmB) intended for topical treatment of CL. Hydrogels were evaluated in vitro for their potential to eliminate promastigote forms of Leishmania spp., to prevent secondary infections, to maintain appropriate healing conditions, and to offer suitable biocompatibility. AmB was incorporated into the system in its non-crystalline state, allowing it to swell more and faster than the system without the drug. Furthermore, the AmB release profile showed a continuous and controlled behavior following Higuchi´s kinetic model. AmB-loaded-PVA-hydrogels (PVA–AmB) also showed efficient antifungal and leishmanicidal activity, no cytotoxic potential for VERO cells, microbial impermeability and water vapor permeability compatible with the healthy skin’s physiological needs. Indeed, these results revealed the potential of PVA–AmB to prevent secondary infections and to maintain a favorable environment for the healing process. Hence, these results suggest that PVA–AmB could be a suitable and efficient new therapeutic approach for the topical treatment of CL.


2005 ◽  
Vol 293 (1-2) ◽  
pp. 193-202 ◽  
Author(s):  
Bo-Yeon Kim ◽  
Hea-Jeong Doh ◽  
Thanh Nguyen Le ◽  
Won-Jea Cho ◽  
Chul-Soon Yong ◽  
...  

2018 ◽  
Vol 192 ◽  
pp. 01016
Author(s):  
Boonnada Pamornpathomkul ◽  
Worranan Rangsimawong ◽  
Theerasak Rojanarata ◽  
Praneet Opanasopit ◽  
Chuleerath Chaiyodsilp ◽  
...  

The purpose of this study was to evaluate the use of different formulations, including solution, gel, liposome and niosome for in vitro skin permeation and antioxidant activity of Centella asiatica (CA) extract. The liposomes and niosomes loaded with CA were characterized to observe the physicochemical properties i.e., particle size, zeta potential, percentage of entrapment efficiency (%EE) and percentage of loading efficiency (%LE). In vitro skin permeation studies revealed that liposome formulations had a superior enhancing effect on skin permeation compared to niosome, gel and solution formulation. Upon applied niosome formulations for the delivery of CA extract at 24 hours (h), the antioxidant activity was higher than liposome, gel and solution formulation, as evidenced by the increased in percent inhibition using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. However, there was no significant difference in antioxidant activity between niosome and liposome formulations. Accordingly, both the liposome and noisome formulations are promising approaches for transdermal delivery of CA extract for promoting successful antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document