Bone Marrow Mesenchymal Stem Cells Derived Discoidin Domain-Containing Receptor 2 (DDR2) as a Communication Mediator to Strengthen the Invasiveness and Metastasis of Papillary Thyroid Carcinoma
Our current study plans to dissect the impacts and its underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on the invasive and metastatic features of PTC. Clinical specimens from distantly metastatic PTC were collected to measure DRR2 level. After being identified via tri-lineage differentiation and flow cytometry, BMSCs were co-cultured with PTC cells followed by analysis of cell proliferation and migration by CCK-8 and Transwell assays, expression of DDR2 and EMT-associated proteins by Western blot. Eventually, shDDR2-transfected BMSCs were infused with PTC cells into the abdominal cavity of mice to establish a mouse model assess their effect on tumor growth and distant metastasis. DDR2 was upregulated in BMSCs and malignant cells located in the metastatic sites. Co-culture with BMSCs enhanced DRR2 expression in PTC cells, which was simultaneously accompanied by the escalated mesenchymalization process. In vivo experiments exhibited that co-injection with BMSCs facilitated disease progression and distant metastasis of malignancies. Instead, DDR2 knockdown significantly impeded BMSCs-triggered migrative and proliferative behaviors of malignant cells. In conclusion, DDR2 derived from BMSCs can function as a communication mediator to strengthen the invasiveness and metastasis of PTC.