A Proficient Scheme for Detecting Breast Cancer by Classification Techniques

2020 ◽  
Vol 17 (8) ◽  
pp. 3453-3457
Author(s):  
Chinka Siva Gopi ◽  
Chidipudi Sivareddy ◽  
K. Mohana Prasad ◽  
R. Sabitha ◽  
K. Ashok Kumar

Cancer is a risky disease which could affect the particular area in depth and may risk the body parts. Now a days, more females are subject to breast cancers. So that Machine Learning Techniques has proposed to analyze the risky area in which the information is utilized for forecasting additional incidents. Machine Learning is popular scheme within several programs one remaining healthcare evaluation. Image Classification as well as feature extraction will bring the affected area’s image into several analyzing methods. With this proposed system, we’ve suggested an CNN (Convolution Neural Network) active design which fetches a sequence of pictures coming from a healthcare scanner repository so that the pictures are preprocessed as well as additional segmented feature extraction. The effectiveness on the suggested design is examined and it is as opposed along with other Machine Learning procedures and it is found the proposed system has supplies the greater results. The functionality on the unit tends to be more precise as the unit has an iterative method for include removal inside classifying pictures. There are some images are kept for the training and testing. We have achieved the accuracy level of comparing with existing model.

Author(s):  
Ramesh Ponnala ◽  
K. Sai Sowjanya

Prediction of Cardiovascular ailment is an important task inside the vicinity of clinical facts evaluation. Machine learning knowledge of has been proven to be effective in helping in making selections and predicting from the huge amount of facts produced by using the healthcare enterprise. on this paper, we advocate a unique technique that pursuits via finding good sized functions by means of applying ML strategies ensuing in improving the accuracy inside the prediction of heart ailment. The severity of the heart disease is classified primarily based on diverse methods like KNN, choice timber and so on. The prediction version is added with special combos of capabilities and several known classification techniques. We produce a stronger performance level with an accuracy level of a 100% through the prediction version for heart ailment with the Hybrid Random forest area with a linear model (HRFLM).


2020 ◽  
Vol 17 (8) ◽  
pp. 3449-3452
Author(s):  
M. S. Roobini ◽  
Y. Sai Satwick ◽  
A. Anil Kumar Reddy ◽  
M. Lakshmi ◽  
D. Deepa ◽  
...  

In today’s world diabetes is the major health challenges in India. It is a group of a syndrome that results in too much sugar in the blood. It is a protracted condition that affects the way the body mechanizes the blood sugar. Prevention and prediction of diabetes mellitus is increasingly gaining interest in medical sciences. The aim is how to predict at an early stage of diabetes using different machine learning techniques. In this paper basically, we use well-known classification that are Decision tree, K-Nearest Neighbors, Support Vector Machine, and Random forest. These classification techniques used with Pima Indians diabetes dataset. Therefore, we predict diabetes at different stage and analyze the performance of different classification techniques. We Also proposed a conceptual model for the prediction of diabetes mellitus using different machine learning techniques. In this paper we also compare the accuracy of the different machine learning techniques to finding the diabetes mellitus at early stage.


Author(s):  
Leena N ◽  
K. K. Saju

<p>Detection of nutritional deficiencies in plants is vital for improving crop productivity. Timely identification of nutrient deficiency through visual symptoms in the plants can help farmers take quick corrective action by appropriate nutrient management strategies. The application of computer vision and machine learning techniques offers new prospects in non-destructive field-based analysis for nutrient deficiency. Color and shape are important parameters in feature extraction. In this work, two different techniques are used for image segmentation and feature extraction to generate two different feature sets from the same image sets. These are then used for classification using different machine learning techniques. The experimental results are analyzed and compared in terms of classification accuracy to find the best algorithm for the two feature sets.</p>


Brain Computer Interface is a paralyzed system. This system is used for direct communication between brain nerves and computer devices. BCI is an imagery movement of the patients who are all unable to communicate with the people. In EEG signals feature extraction plays an important role. Statistical based features are essential feature being used in machine learning applications. Researchers mainly focus on the filters and feature extraction techniques. In this paper data are collected from the BCI Competition III dataset 1a. Statistical features like minimum, maximum, standard deviation, variance, skewnesss, kurtosis, root mean square, average, energy, contrast, correlation and Homogeneity are extracted. Classification is done using machine learning techniques such as Support Vector Machine, Artificial Neural Network and K-Nearest Neighbor. In the proposed system 90.6% accuracy is achieved


Author(s):  
Aires Da Conceicao ◽  
Sheshang D. Degadwala

Self-driving vehicle is a vehicle that can drive by itself it means without human interaction. This system shows how the computer can learn and the over the art of driving using machine learning techniques. This technique includes line lane tracker, robust feature extraction and convolutional neural network.


Author(s):  
Recep Sinan Arslan ◽  
İbrahim Alper Doğru ◽  
Necaattin Barişçi

Mobile applications create their own security and privacy models through permission-based models. Some applications may request extra permissions that they do not need but may use for suspicious activities. The aim of this study is to identify those spare permissions requested and use this information in the security and privacy approach, which uses static and code analysis together and applies them to the existing datasets; then the results are compared and accuracy level is determined. Classification is made with an accuracy rate of 91.95%.


Sign in / Sign up

Export Citation Format

Share Document