Surface Modification of Polypropylene Separators in Lithium-Ion Batteries Using Inductively Coupled Plasma Treatment

2014 ◽  
Vol 14 (12) ◽  
pp. 9368-9372 ◽  
Author(s):  
Jinyoung Son ◽  
Min-Sik Kim ◽  
Hyun Woo Lee ◽  
Jong-Sung Yu ◽  
Kwang-Ho Kwon
Recycling ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 26
Author(s):  
Jonas Henschel ◽  
Maximilian Mense ◽  
Patrick Harte ◽  
Marcel Diehl ◽  
Julius Buchmann ◽  
...  

The lithium-ion battery is the most powerful energy storage technology for portable and mobile devices. The enormous demand for lithium-ion batteries is accompanied by an incomplete recycling loop for used lithium-ion batteries and excessive mining of Li and transition metals. The hyperaccumulation of plants represents a low-cost and green technology to reduce environmental pollution of landfills and disused mining regions with low environmental regulations. To examine the capabilities of these approaches, the hyperaccumulation selectivity of Alyssum murale for metals in electrode materials (Ni, Co, Mn, and Li) was evaluated. Plants were cultivated in a conservatory for 46 days whilst soils were contaminated stepwise with dissolved transition metal species via the irrigation water. Up to 3 wt% of the metals was quantified in the dry matter of different plant tissues (leaf, stem, root) by means of inductively coupled plasma-optical emission spectroscopy after 46 days of exposition time. The lateral distribution was monitored by means of micro X-ray fluorescence spectroscopy and laser ablation-inductively coupled plasma-mass spectrometry, revealing different storage behaviors for low and high metal contamination, as well as varying sequestration mechanisms for the four investigated metals. The proof-of-concept regarding the phytoextraction of metals from LiNi0.33Co0.33Mn0.33O2 cathode particles in the soil was demonstrated.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yeon Jae Jung ◽  
Bong Young Yoo ◽  
Sung Cheol Park ◽  
Seong Ho Son

The use of lithium-ion batteries (LIBs) has increased in recent years. Thus, efficient recycling is important. In this study, the Taguchi method was used to find the optimal selective lithium leaching parameters for spent LIB recycling. Orthogonal array, signal-to-noise ratio, and analysis of variance were employed to investigate the optimization of selective lithium leaching. The experimental parameters were heat treatment and leaching conditions. The lithium leaching ratio was analyzed by inductively coupled plasma (ICP). The reaction temperature was analyzed by thermogravimetry differential scanning calorimetry (TG-DSC) using lithium cobalt oxide (LCO) and carbon powder, and X-ray diffraction (XRD) was performed after heat treatment at different temperatures. From the XRD analysis, a Li2CO3 peak was observed at 700 °C. After heat treatment at 850 °C, a peak of Li2O was confirmed as Li2CO3 decomposed into Li2O and CO2 over 723 °C. The Li2O reacts with Co3O4 at a high temperature to form LCO. The phase of lithium in the LIB changes according to the conditional heat treatment, affecting the lithium leaching rates. As heat treatment conditions, N2 atmosphere combined with 700 °C heat treatment is suitable, and the solid–liquid ratio is important as a leaching factor for selective lithium leaching.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 784
Author(s):  
Anna Dańczak ◽  
Ronja Ruismäki ◽  
Tommi Rinne ◽  
Lassi Klemettinen ◽  
Hugh O’Brien ◽  
...  

One possible way of recovering metals from spent lithium-ion batteries is to integrate the recycling with already existing metallurgical processes. This study continues our effort on integrating froth flotation and nickel-slag cleaning process for metal recovery from spent batteries (SBs), using anodic graphite as the main reductant. The SBs used in this study was a froth fraction from flotation of industrially prepared black mass. The effect of different ratios of Ni-slag to SBs on the time-dependent phase formation and metal behavior was investigated. The possible influence of graphite and sulfur contents in the system on the metal alloy/matte formation was described. The trace element (Co, Cu, Ni, and Mn) concentrations in the slag were analyzed using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) technique. The distribution coefficients of cobalt and nickel between the metallic or sulfidic phase (metal alloy/matte) and the coexisting slag increased with the increasing amount of SBs in the starting mixture. However, with the increasing concentrations of graphite in the starting mixture (from 0.99 wt.% to 3.97 wt.%), the Fe concentration in both metal alloy and matte also increased (from 29 wt.% to 68 wt.% and from 7 wt.% to 49 wt.%, respectively), which may be challenging if further hydrometallurgical treatment is expected. Therefore, the composition of metal alloy/matte must be adjusted depending on the further steps for metal recovery.


2021 ◽  
pp. 160626
Author(s):  
Liwei Feng ◽  
Yan Liu ◽  
Lei Wu ◽  
Wenchao Qin ◽  
Zihao Yang ◽  
...  

2021 ◽  
Vol 363 ◽  
pp. 115589
Author(s):  
Niloufar Sabetzadeh ◽  
Cavus Falamaki ◽  
Reza Riahifar ◽  
Maziar Sahba Yaghmaee ◽  
Babak Raissi

Sign in / Sign up

Export Citation Format

Share Document