Design and Analysis of DC/DC Boost Converter Using Vertical GaN Power Device
In this study, a high-performance vertical gallium nitride (GaN) power transistor is designed by using two-dimensional technology computer-aided design simulator. The vertical GaN transistor is used to analyze the DC/DC boost converter. The systems requiring high voltages of 1000 V or more, such as electric vehicles, need wide devices to achieve a high breakdown voltage when using conventional power devices. However, vertical GaN transistors can be fabricated with small device area and high breakdown voltage. The proposed device has an off-current of 4.72×10−10 A/cm2, an on-current of 17,528 A/cm2, and a high breakdown voltage of 1,265 V due to good gate controllability and the very long gate-to-drain length. Using the designed device, a boost converter that doubles the input voltage was constructed and is characteristics were examined. The designed boost converter obtained an output voltage of 1,951 V and the voltage conversion efficiency was considerably high at 97.55% when the input voltage was 1,000 V.