Design and Analysis of DC/DC Boost Converter Using Vertical GaN Power Device

2021 ◽  
Vol 21 (8) ◽  
pp. 4320-4324
Author(s):  
Min Su Cho ◽  
Hye Jin Mun ◽  
Sang Ho Lee ◽  
Hee Dae An ◽  
Jin Park ◽  
...  

In this study, a high-performance vertical gallium nitride (GaN) power transistor is designed by using two-dimensional technology computer-aided design simulator. The vertical GaN transistor is used to analyze the DC/DC boost converter. The systems requiring high voltages of 1000 V or more, such as electric vehicles, need wide devices to achieve a high breakdown voltage when using conventional power devices. However, vertical GaN transistors can be fabricated with small device area and high breakdown voltage. The proposed device has an off-current of 4.72×10−10 A/cm2, an on-current of 17,528 A/cm2, and a high breakdown voltage of 1,265 V due to good gate controllability and the very long gate-to-drain length. Using the designed device, a boost converter that doubles the input voltage was constructed and is characteristics were examined. The designed boost converter obtained an output voltage of 1,951 V and the voltage conversion efficiency was considerably high at 97.55% when the input voltage was 1,000 V.

2018 ◽  
Vol 170 ◽  
pp. 01115 ◽  
Author(s):  
Alexander Kolbasin ◽  
Oksana Husu

In modern industrial production some of the major factors of successful development include: cost reduction of the production, im-provement of its quality, as well as help to minimise the time in market en-try. Computer-aided design and Computer-aided engineering (CAD / CAE - systems) are the most effective for implementation of these requirements. Possible use of this engineering modeling simulation in conjunction with the power and speed of high performance computing could reduce costs and time of each cycle of designing, and also significantly reduce devel-opment time. The introduction of new technologies, the use of high quality products and engagement of qualified personnel would allow businesses and organizations to get on a path of innovative development of design and production systems.


2011 ◽  
Vol 2-3 ◽  
pp. 1047-1050
Author(s):  
Ey Goo Kang ◽  
Sung Young Hong ◽  
Byoung Sub Ahn

The trench field ring for breakdown voltage of power devices is proposed. The new ring can improve 10% efficiency comparing with conventional field ring. Five parameters of trench field ring for design of trench field ring are analyzed and 2-D devices simulation and process simulations are carried out. The number of field ring, juction depth, distance of field rings, trench width, doping profiled are discussed. The proposed trench field ring was better for higher voltage more than 1000V.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1550 ◽  
Author(s):  
Yuliang Zhang ◽  
Xing Lu ◽  
Xinbo Zou

Device characteristics of GaN merged P-i-N Schottky (MPS) diodes were evaluated and studied via two-dimensional technology computer-aided design (TCAD) after calibrating model parameters and critical electrical fields with experimental proven results. The device’s physical dimensions and drift layer concentration were varied to study their influence on the device’s performance. Extending the inter-p-GaN region distance or the Schottky contact portion could enhance the forward conduction capability; however, this leads to compromised electrical field screening effects from neighboring PN junctions, as well as reduced breakdown voltage. By reducing the drift layer background concentration, a higher breakdown voltage was expected for MPSs, as a larger portion of the drift layer itself could be depleted for sustaining vertical reverse voltage. However, lowering the drift layer concentration would also result in a reduction in forward conduction capability. The method and results of this study provide a guideline for designing MPS diodes with target blocking voltage and forward conduction at a low bias.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1422
Author(s):  
Ki-Yeong Kim ◽  
Joo-Seok Noh ◽  
Tae-Young Yoon ◽  
Jang-Hyun Kim

In this study, we propose a super junction insulated-gate bipolar transistor (SJBT) with separated n-buffer layers to solve a relatively long time for carrier annihilation during turn-off. This proposition improves the turn-off characteristic while maintaining similar on-state characteristics and breakdown voltage. The electrical characteristics of the devices were simulated by using the Synopsys Sentaurus technology computer-aided design (TCAD) simulation tool, and we compared the conventional SJBT with SJBT with separated n-buffer layers. The simulation tool result shows that turn-off loss (Eoff) drops by about 7% when on-state voltage (Von) and breakdown voltage (BV) are similar. Von increases by about 0.5% and BV decreases by only about 0.8%.


2020 ◽  
Vol 98 (5) ◽  
pp. 127-134
Author(s):  
Henry Lee Aldridge ◽  
Jeffrey B Johnson ◽  
Rajendran Krishnasamy ◽  
Vibhor Jain ◽  
Rahul Mishra ◽  
...  

2011 ◽  
Vol 413 ◽  
pp. 391-398 ◽  
Author(s):  
Hassan Habib ◽  
Nicholas Wright ◽  
Alton B. Horsfall

The commercialisation of Silicon Carbide devices and circuits require high performance, miniaturised devices which are energy efficient and can function on the limited power resources available in harsh environments. The high temperature Technology Computer Aided Design (TCAD) simulation model has been used to design and optimise a potential commercial device to meet the current challenges faced by Silicon Carbide technology. In this paper we report a new methodology to optimise the design of high temperature four terminal enhancement mode n-and p-JFETs for Complementary JFET (CJFET) logic.


Sign in / Sign up

Export Citation Format

Share Document