Heat Transfer Analysis of Stagnation Point Flow Over a Stretching Cylinder in a Suspension of Carbon Nanotube

2017 ◽  
Vol 6 (6) ◽  
pp. 1173-1180 ◽  
Author(s):  
Mahantesh M. Nandeppanavar ◽  
S. Shakunthala
2012 ◽  
Vol 79 (2) ◽  
Author(s):  
M. Mustafa ◽  
T. Hayat ◽  
Awatif A. Hendi

This communication studies the effect of melting heat transfer on the stagnation-point flow of a Jeffrey fluid over a stretching sheet. Heat transfer analysis is carried out in the presence of viscous dissipation. The arising differential system has been solved by the homotopy analysis method (HAM). The results indicate an increase in the velocity and the boundary layer thickness with an increase in the values of the elastic parameter (Deborah number) for a Jeffrey fluid which are opposite to those accounted for in the literature for the other subclasses of rate type fluids. Furthermore, an increase in the melting process corresponds to an increase in the velocity and a decrease in the temperature. A comparative study between the current computations and the previous studies is also presented in a limiting sense.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Maria Imtiaz ◽  
Hira Nazar ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Abstract The focus of this paper is to study the effects of stagnation point flow and porous medium on ferrofluid flow over a variable thicked sheet. Heat transfer analysis is discussed by including thermal radiation. Suitable transformations are applied to convert partial differential equations to ordinary differential equations. Convergent results for series solutions are calculated. The impact of numerous parameters on velocity and temperature is displayed for series solutions. Graphical behavior for skin friction coefficient and Nusselt number is also analyzed. Numerical values of Nusselt number are tabulated depending upon various parameters


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1335-1344 ◽  
Author(s):  
Munawwar Abbas ◽  
Muhammad Bhatti ◽  
Mohammad Rashidi

This article examines the numerical study of heat transfer analysis on MHD stagnation point flow past a permeable shrinking/stretching sheet through a porous media. The governing equations have been reduced to the ODE by utilizing similarity variables. The obtained highly non-linear coupled differential equations have been solved by implementing a numerical scheme labeled as successive linearization method. The influences for the pertinent parameters on velocity profile and temperature profile is debated and demonstrated graphically. Numerical comparisons in some special cases have been brought along the prevailing literature, and it is noticed that the current outcomes are in good concord.


2019 ◽  
Vol 95 (1) ◽  
pp. 015704
Author(s):  
Ambreen Bano ◽  
M Sajid ◽  
K Mahmood ◽  
M A Rana

Author(s):  
M. Nawaz ◽  
A Zeeshan ◽  
R Ellahi ◽  
S Abbasbandy ◽  
Saman Rashidi

Purpose – The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The main emphasis is to find the analytical and numerical solutions for the said mathematical model. The work undertaken is a blend of numerical and analytical studies. Effects of active parameters such as: Hartmann number, Prandtl number, Eckert number, Nusselt number, Skin friction and dimensionless fluids parameters on the flow and heat transfer characteristics have been examined by graphs and tables. Compression is also made with the existing benchmark results. Design/methodology/approach – Analytical solutions of non-linear coupled equations are developed by optimal homotopy analysis method (OHAM). A very effective and higher order numerical scheme hybrid GA and Nelder-Mead optimization Algorithms are used for numerical investigations. Findings – An excellent agreement with the existing results in limiting sense is noted. It is observed that the radial velocity is an increasing function of dimensionless material parameters α 1, α 2 and β. Temperature increases by increasing the values of M, Pr, Ec and γ. Non-Newtonian parameter β has similar effects on skin friction coefficient and Nusselt number. The wall heat transfer rate is a decreasing function of A and ß whereas it increases by increasing conjugate parameter γ. Originality/value – The problem under consideration has been widely studied by many investigators due to its importance and engineering applications. But most of the studies as the authors have documented are for Newtonian or viscous fluids. But no such analysis is available in the literature which can describe the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of GA.


Sign in / Sign up

Export Citation Format

Share Document