Bayesian Structural Time Series

2020 ◽  
Vol 12 (1) ◽  
pp. 54-61
Author(s):  
Abdullah M. Almarashi ◽  
Khushnoor Khan

The current study focused on modeling times series using Bayesian Structural Time Series technique (BSTS) on a univariate data-set. Real-life secondary data from stock prices for flying cement covering a period of one year was used for analysis. Statistical results were based on simulation procedures using Kalman filter and Monte Carlo Markov Chain (MCMC). Though the current study involved stock prices data, the same approach can be applied to complex engineering process involving lead times. Results from the current study were compared with classical Autoregressive Integrated Moving Average (ARIMA) technique. For working out the Bayesian posterior sampling distributions BSTS package run with R software was used. Four BSTS models were used on a real data set to demonstrate the working of BSTS technique. The predictive accuracy for competing models was assessed using Forecasts plots and Mean Absolute Percent Error (MAPE). An easyto-follow approach was adopted so that both academicians and practitioners can easily replicate the mechanism. Findings from the study revealed that, for short-term forecasting, both ARIMA and BSTS are equally good but for long term forecasting, BSTS with local level is the most plausible option.

2005 ◽  
Vol 9 (3) ◽  
pp. 145-172 ◽  
Author(s):  
Marko Hannonen

This paper analyses spatio‐temporal variation of land prices in two single localities by means of structural time series modelling formalism that combines the flexibility of a time series model with that of the interpretation of a regression analysis. The extension of conventional hedonic models by introducing unobserved components for trend and cycle resulted to significant improvements in their post‐sample predictive accuracy. In predictive testing, for most model formulations the unobserved component approach generated only a marginal average prediction error when compared to the orthodox hedonic models, which, in contrast, yielded to a considerable amount of systematic prediction error. It therefore seems that the structural time‐series modelling paradigm offers a more viable alternative to the hedonic analysis of land prices than the conventional approach based on least squares estimates. The effect of slope component in the trend specification was found to be statistically insignificant, which implies that the elementary local level model would be the most adequate description of the long‐term land price movements.


2017 ◽  
Author(s):  
Abdullah Al-Awadhi ◽  
ahmad Bash ◽  
Fouad Jamaani

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1679
Author(s):  
Jacopo Giacomelli ◽  
Luca Passalacqua

The CreditRisk+ model is one of the industry standards for the valuation of default risk in credit loans portfolios. The calibration of CreditRisk+ requires, inter alia, the specification of the parameters describing the structure of dependence among default events. This work addresses the calibration of these parameters. In particular, we study the dependence of the calibration procedure on the sampling period of the default rate time series, that might be different from the time horizon onto which the model is used for forecasting, as it is often the case in real life applications. The case of autocorrelated time series and the role of the statistical error as a function of the time series period are also discussed. The findings of the proposed calibration technique are illustrated with the support of an application to real data.


2021 ◽  
Author(s):  
Annette Dietmaier ◽  
Thomas Baumann

<p>The European Water Framework Directive (WFD) commits EU member states to achieve a good qualitative and quantitative status of all their water bodies.  WFD provides a list of actions to be taken to achieve the goal of good status.  However, this list disregards the specific conditions under which deep (> 400 m b.g.l.) groundwater aquifers form and exist.  In particular, deep groundwater fluid composition is influenced by interaction with the rock matrix and other geofluids, and may assume a bad status without anthropogenic influences. Thus, a new concept with directions of monitoring and modelling this specific kind of aquifers is needed. Their status evaluation must be based on the effects induced by their exploitation. Here, we analyze long-term real-life production data series to detect changes in the hydrochemical deep groundwater characteristics which might be triggered by balneological and geothermal exploitation. We aim to use these insights to design a set of criteria with which the status of deep groundwater aquifers can be quantitatively and qualitatively determined. Our analysis is based on a unique long-term hydrochemical data set, taken from 8 balneological and geothermal sites in the molasse basin of Lower Bavaria, Germany, and Upper Austria. It is focused on a predefined set of annual hydrochemical concentration values. The data range dates back to 1937. Our methods include developing threshold corridors, within which a good status can be assumed, and developing cluster analyses, correlation, and piper diagram analyses. We observed strong fluctuations in the hydrochemical characteristics of the molasse basin deep groundwater during the last decades. Special interest is put on fluctuations that seem to have a clear start and end date, and to be correlated with other exploitation activities in the region. For example, during the period between 1990 and 2020, bicarbonate and sodium values displayed a clear increase, followed by a distinct dip to below-average values and a subsequent return to average values at site F. During the same time, these values showed striking irregularities at site B. Furthermore, we observed fluctuations in several locations, which come close to disqualifying quality thresholds, commonly used in German balneology. Our preliminary results prove the importance of using long-term (multiple decades) time series analysis to better inform quality and quantity assessments for deep groundwater bodies: most fluctuations would stay undetected within a < 5 year time series window, but become a distinct irregularity when viewed in the context of multiple decades. In the next steps, a quality assessment matrix and threshold corridors will be developed, which take into account methods to identify these fluctuations. This will ultimately aid in assessing the sustainability of deep groundwater exploitation and reservoir management for balneological and geothermal uses.</p>


Sign in / Sign up

Export Citation Format

Share Document