Cascade-Correlation Neural Network for Sensor Fault Detection and Data Recovery with On-line Learning

2011 ◽  
Vol 9 (5) ◽  
pp. 2034-2037 ◽  
Author(s):  
Weiguo Zhao ◽  
Liying Wang ◽  
Chengjun Hu ◽  
Jianmin Hou
1997 ◽  
Vol 30 (11) ◽  
pp. 561-566 ◽  
Author(s):  
Koji Morinaga ◽  
Michael E. Sugars ◽  
Koji Muteki ◽  
Haruo Takada

Author(s):  
Takahisa Kobayashi ◽  
Donald L. Simon

In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.


2011 ◽  
Vol 467-469 ◽  
pp. 923-927
Author(s):  
Ai She Shui ◽  
Wei Min Chen ◽  
Li Chuan Liu ◽  
Yong Hong Shui

This paper focuses on the problem of detecting sensor faults in feedback control systems with multistage RBF neural network ensemble-based estimators. The sensor fault detection framework is introduced. The modeling process of the estimator is presented. Fault detection is accomplished by evaluating residuals, which are the differences between the actual values of sensor outputs and the estimated values. The particular feature of the fault detection approach is using the data sequences of multi-sensor readings and controller outputs to establish the bank of estimators and fault-sensitive detectors. A detectability study has also been done with the additive type of sensor faults. The effectiveness of the proposed approach is demonstrated by means of three tank system experiment results.


2006 ◽  
Vol 39 (15) ◽  
pp. 91-96
Author(s):  
Gianluca Ippoliti ◽  
Sauro Longhi ◽  
Andrea Monteriù

Sign in / Sign up

Export Citation Format

Share Document