scholarly journals Interaction between El Niño and Extreme Indian Ocean Dipole

2010 ◽  
Vol 23 (3) ◽  
pp. 726-742 ◽  
Author(s):  
Jing-Jia Luo ◽  
Ruochao Zhang ◽  
Swadhin K. Behera ◽  
Yukio Masumoto ◽  
Fei-Fei Jin ◽  
...  

Abstract Climate variability in the tropical Indo-Pacific sector has undergone dramatic changes under global ocean warming. Extreme Indian Ocean dipole (IOD) events occurred repeatedly in recent decades with an unprecedented series of three consecutive episodes during 2006–08, causing vast climate and socioeconomic effects worldwide and weakening the historic El Niño–Indian monsoon relationship. Major attention has been paid to the El Niño influence on the Indian Ocean, but how the IOD influences El Niño and its predictability remained an important issue to be understood. On the basis of various forecast experiments activating and suppressing air–sea coupling in the individual tropical ocean basins using a state-of-the-art coupled ocean–atmosphere model with demonstrated predictive capability, the present study shows that the extreme IOD plays a key role in driving the 1994 pseudo–El Niño, in contrast with traditional El Niño theory. The pseudo–El Niño is more frequently observed in recent decades, coincident with a weakened atmospheric Walker circulation in response to anthropogenic forcing. The study’s results suggest that extreme IOD may significantly enhance El Niño and its onset forecast, which has being a long-standing challenge, and El Niño in turn enhances IOD and its long-range predictability. The intrinsic El Niño–IOD interaction found here provides hope for enhanced prediction skill of both of these climate modes, and it sheds new light on the tropical climate variations and their changes under the influence of global warming.

2007 ◽  
Vol 20 (13) ◽  
pp. 2937-2960 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract To understand the mechanisms of the interannual variability in the tropical Indian Ocean, two long-term simulations are conducted using a coupled ocean–atmosphere GCM—one with active air–sea coupling over the global ocean and the other with regional coupling restricted within the Indian Ocean to the north of 30°S while the climatological monthly sea surface temperatures (SSTs) are prescribed in the uncoupled oceans to drive the atmospheric circulation. The major spatial patterns of the observed upper-ocean heat content and SST anomalies can be reproduced realistically by both simulations, suggesting that they are determined by intrinsic coupled processes within the Indian Ocean. In both simulations, the interannual variability in the Indian Ocean is dominated by a tropical mode and a subtropical mode. The tropical mode is characterized by a coupled feedback among thermocline depth, zonal SST gradient, and wind anomalies over the equatorial and southern tropical Indian Ocean, which is strongest in boreal fall and winter. The tropical mode simulated by the global coupled model reproduces the main observational features, including a seasonal connection to the model El Niño–Southern Oscillation (ENSO). The ENSO influence, however, is weaker than that in a set of ensemble simulations described in Part I of this study, where the observed SST anomalies for 1950–98 are prescribed outside the Indian Ocean. Combining with the results from Part I of this study, it is concluded that ENSO can modulate the temporal variability of the tropical mode through atmospheric teleconnection. Its influence depends on the ENSO strength and duration. The stronger and more persistent El Niño events in the observations extend the life span of the anomalous events in the tropical Indian Ocean significantly. In the regional coupled simulation, the tropical mode is still active, but its dominant period is shifted away from that of ENSO. In the absence of ENSO forcing, the tropical mode is mainly stimulated by an anomalous atmospheric direct thermal cell forced by the fluctuations of the northwestern Pacific monsoon. The subtropical mode is characterized by an east–west dipole pattern of the SST anomalies in the southern subtropical Indian Ocean, which is strongest in austral fall. The SST anomalies are initially forced by surface heat flux anomalies caused by the anomalous southeast trade wind in the subtropical ocean during austral summer. The trade wind anomalies are in turn associated with extratropical variations from the southern annular mode. A thermodynamic air–sea feedback strengthens these subtropical anomalies quickly in austral fall and extends their remnants into the tropical ocean in austral winter. In the simulations, this subtropical variability is independent of ENSO.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2017 ◽  
Vol 31 (2) ◽  
pp. 184-195 ◽  
Author(s):  
Martono Martono ◽  
Teguh Wardoyo

El Niño and the Indian Ocean Dipole (IOD) are oceanographic phenomena which occur in the tropical Pacific Ocean and the Indian Ocean due to air–sea interactions. These phenomena affect climate variability both regionally and globally. This study was conducted to understand the impacts of El Niño 2015 and IOD 2016 events on rainfall in the Pameungpeuk and Cilacap regions. The data used consists of the NIÑO3.4 index, IOD index, daily rainfall from 1987–2016, daily sea surface temperature from 1987–2016, daily sea surface height from 1994–2016 and pentad sea surface current from 2007–2016. The method used in this research was a descriptive analysis. The results have shown that rainfall in Pameungpeuk and Cilacap was influenced by El Niño 2015 and negative IOD 2016. During El Niño 2015 a decrease in rainfall occurred, whereas during negative IOD 2016 rainfall increased. Rainfall anomalies in the east season and the second transition season during El Niño 2015 in Pameungpeuk reached −107 mm and −374 mm; meanwhile in Cilacap rainfall anomalies reached −111 mm and −218 mm. Conversely, rainfall anomalies during negative IOD 2016 reached 109 mm and 360 mm in Pameungpeuk, and in Cilacap reached 293 mm and 365 mm. Changes in rainfall in Pameungpeuk and Cilacap during El Niño 2015 and negative IOD 2016 events were closely related to the weakening and strengthening of convections in the southern waters of Java.


2018 ◽  
Vol 68 (1) ◽  
pp. 101
Author(s):  
Blair Trewin

This is a summary of the southern hemisphere atmospheric circulation patterns and meteorological indices for winter 2016; an account of seasonal rainfall and temperature for the Australian region and the broader southern hemisphere is also provided. One of the strongest negative phases on record of the Indian Ocean Dipole (IOD) developed during the season, contributing to Australia's second wettest winter on record, with rainfall above average over the vast majority of the continent. Neutral conditions prevailed in the tropical Pacific following the end of a strong El Niño event in autumn 2016, but the continuing effect of the 2015-16 El Niño was still evident in southern hemisphere temperatures, which were at or near record high levels.


Climate ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 38 ◽  
Author(s):  
Kopal Arora ◽  
Prasanjit Dash

This study is set out to understand the impact of El Niño Modoki and the Tropical Cyclone Potential Intensity (TCPI) in the North Indian Ocean. We also hypothesized and tested if the Indian Ocean Dipole (IOD) reveals a likely connection between the two phenomena. An advanced mathematical tool namely the Empirical Mode Decomposition (EMD) is employed for the analysis. A major advantage of using EMD is its adaptability approach to deal with the non-linear and non-stationary signals which are similar to the signals used in this study and are also common in both atmospheric and oceanic sciences. This study has identified IOD as a likely missing link to explain the connection between El Niño Modoki and TCPI. This lays the groundwork for future research into this connection and its possible applications in meteorology.


2019 ◽  
Vol 32 (4) ◽  
pp. 1047-1061 ◽  
Author(s):  
Jie Ma ◽  
Ming Feng ◽  
Bernadette M. Sloyan ◽  
Jian Lan

In this study, low-frequency variability of the meridional temperature transport in the Indian Ocean is examined using a mesoscale-eddy-resolving global ocean circulation model for the period 1979–2014. The dominant empirical orthogonal function (EOF) of the meridional temperature transport is found to be highly influenced by Pacific El Niño–Southern Oscillation (ENSO) through both oceanic and atmospheric waveguides, with the southward temperature transport being stronger during La Niña and weaker during El Niño. A dynamical decomposition of the meridional streamfunction and temperature transport shows that the relative importance of different dynamic modes varies with latitude; these modes act together to contribute to the coherent ENSO response. The Ekman mode explains a larger part of low-frequency variability in overturning and temperature transport north of the equator. Between 25° and 3°S, variations associated with vertical shear mode are of greater importance. The external mode has an important contribution between 30° and 25°S where the western boundary currents impinge on topography. South of 25°S, the variability of the external mode contribution has significant negative correlations with the vertical shear mode, suggesting that the large variability of external mode depends on the joint effects of baroclinicity and topography, such that hydrographic sections alone may not be suitable for deducing changes in the meridional temperature transport at these latitudes.


Sign in / Sign up

Export Citation Format

Share Document