scholarly journals A Grid-Refinement-Based Approach for Modeling the Convective Boundary Layer in the Gray Zone: Algorithm Implementation and Testing

2018 ◽  
Vol 75 (4) ◽  
pp. 1143-1161 ◽  
Author(s):  
Bowen Zhou ◽  
Ming Xue ◽  
Kefeng Zhu

Abstract A grid-refinement-based method is implemented in a community atmospheric model to improve the representation of convective boundary layer (CBL) turbulence on gray-zone [i.e., ~O(1) km] grids. At this resolution, CBL convection is partially resolved and partially subgrid scale (SGS), such that neither traditional mesoscale planetary boundary layer (PBL) schemes nor SGS closures for large-eddy simulations (LESs) are appropriate. The proposed method utilizes two-way interactive nesting to refine the horizontal resolution of the unstable surface layer of the daytime CBL. SGS turbulent mixing in the fine nest and coarse parent grids are parameterized by an LES turbulence closure and a PBL scheme, respectively. The method does not rely on predetermined empirical functions to introduce grid (scale) dependency and in theory works with any PBL scheme. Compared to the stand-alone gray-zone simulation, the proposed approach shows improvements in terms of higher-order statistics, the timing of the onset of resolved convection, and the convective structures. A deficiency of the method exists when the nest domain is limited to the surface layer; the convective structures become gradually contaminated by spurious convection on the parent gray-zone grid. A deeper nest domain alleviates the issue at increased computational costs.

Author(s):  
Bowen Zhou ◽  
Yuhuan Li ◽  
Shiguang Miao

AbstractA scale adaptive model is developed for the representation of dry convective boundary layer (CBL) turbulence in numerical models operating at O(100 m - 1 km) horizontal resolution, also known as the model gray zone of the CBL. The new model is constructed based on a planetary boundary layer (PBL) scheme and a large-eddy simulation (LES) closure that are both turbulence kinetic energy-based parameterizations. Scale adaptivity is achieved by “blending” the PBL scheme with the LES closure through an inverse averaging procedure that naturally accounts for vertical variations of the dominant turbulent length scales, hence the gray zone range. High-resolution wide-domain LES benchmark cases covering a broad range of CBL bulk stability are filtered to gray zone resolutions, and analyzed to determine the averaging coefficients. Stability dependence of the dominant length scales is revealed by the analysis and accounted for in the new model. The turbulence model is implemented into a community atmospheric model, and tested for idealized cases. Compared to two established gray zone models, the new model performs equally well under strongly convective conditions, and is more advantageous for the weakly unstable and near neutral CBL.


2017 ◽  
Vol 74 (11) ◽  
pp. 3497-3513 ◽  
Author(s):  
Bowen Zhou ◽  
Ming Xue ◽  
Kefeng Zhu

Abstract The model gray zone refers to the range of grid spacings comparable to the dominant length scale of the flow. In the gray zone, the flow is partially resolved and partially subgrid scale (SGS). Neither ensemble-averaging-based parameterizations nor turbulence closures are appropriate for parameterizing the effects of SGS motions on the resolved flow. The gray zone of the convective boundary layer (CBL) is in the range of CBL depth, typically O(1) km. A new approach that seeks explicit resolution of the unstable surface layer through a nest layer of fine grid spacing is proposed to improve CBL parameterization in the gray zone. To provide the theoretical basis for the approach, a linear analytic model is presented, and one-way nested simulations are performed to investigate the dynamical coupling between the surface layer and the mixed layer. The analytic model shows that at the onset of thermal instability, the vertical and horizontal structures of the mixed layer are set by surface-layer forcings. The nested 3D simulations extend the findings from the analytic model and further reveal potential improvements in high-order statistics and resolved convective structures both including and extending above the nest region compared to the stand-alone gray-zone simulations. This study suggests that when the most energetic scales of CBL convection are resolved in the surface layer, the overall simulation of the CBL improves at gray-zone resolutions.


2020 ◽  
Vol 77 (5) ◽  
pp. 1865-1885 ◽  
Author(s):  
Qingfang Jiang

Abstract The influence of swell on turbulence and scalar profiles in a marine surface layer and underlying physics is examined in this study through diagnosis of large-eddy simulations (LES) that explicitly resolve the surface layer and underlying swell. In general, under stable conditions, the mean wind and scalar profiles can be significantly modified by swell. The influence of swell on wind shear, turbulence structure, scalar profiles, and evaporation duct (ED) characteristics becomes less pronounced in a more convective boundary layer, where the buoyancy production of turbulence is significant. Dynamically, swell has little direct impact on scalar profiles. Instead it modifies the vertical wind shear by exerting pressure drag on the wave boundary layer. The resulting redistribution of vertical wind shear leads to changes in turbulence production and therefore turbulence mixing of scalars. Over swell, the eddy diffusivities from LES systematically deviate from the Monin–Obukhov similarity theory (MOST) prediction, implying that MOST becomes invalid over a swell-dominated sea. The deviations from MOST are more pronounced in a neutral or stable boundary layer under relatively low winds and less so in a convective boundary layer.


2014 ◽  
Vol 71 (7) ◽  
pp. 2545-2563 ◽  
Author(s):  
Bowen Zhou ◽  
Jason S. Simon ◽  
Fotini K. Chow

Abstract Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh–Bénard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications.


2013 ◽  
Vol 148 (1) ◽  
pp. 51-72 ◽  
Author(s):  
Anirban Garai ◽  
Eric Pardyjak ◽  
Gert-Jan Steeneveld ◽  
Jan Kleissl

2006 ◽  
Vol 6 (12) ◽  
pp. 4231-4251 ◽  
Author(s):  
O. Hellmuth

Abstract. In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that observations from the surface layer alone are not conclusive to elucidate the origin of newly formed particles. This is also true with respect to the interpretation of box modelling studies. The binary and ternary NPF bursts observed in the surface layer differ with respect to burst amplitude and phase. New particles simulated in the binary scenario are formed in the forenoon in the upper part of the growing CBL, followed by turbulence-induced top-down transport. Hence, with respect to the burst observation site in the surface layer, new particles are formed ex situ. In opposite to this, the ternary case reveals a much more complex pattern. Here, NPF is initiated in the early morning hours in the surface layer, when temperature (T) is low and relative humidity (RH), sulphur dioxide (SO2) and NH3 concentrations are high, hence new particles are formed in situ. Shortly after that, ex situ NPF in the free troposphere sets in, followed by entrainment and top-down diffusion of newly formed particles into the surface layer. Altogether, these processes mainly contribute to the formation of a strong burst in the morning hours in the ternary scenario. While the time-height cross-section of the binary nucleation rate resembles a "blob"-like evolution pattern, the ternary one resembles a "sucking tube"-like pattern. The time-height cross-sections of the flux pattern and double correlations could be plausibly interpreted in terms of CBL turbulence and entrainment/detrainment processes both in the binary and in the ternary case. Although the present approach is a pure conceptual one, it shows the feasibility to simulate gas-aerosol-turbulence interactions in the CBL. Prior to a dedicated verification/validation study, further attempts are necessary to consider a more advanced description of the formation and activation of thermodynamically stable clusters according to modern concepts proposed by Kulmala et al. (2000), Kulmala (2003) and Kulmala et al. (2004a).


2019 ◽  
Vol 147 (5) ◽  
pp. 1805-1821 ◽  
Author(s):  
Jason S. Simon ◽  
Bowen Zhou ◽  
Jeffrey D. Mirocha ◽  
Fotini Katopodes Chow

Abstract As model grid resolutions move from the mesoscale to the microscale, turbulent structures represented in atmospheric boundary layer simulations change dramatically. At intermediate resolutions, the so-called gray zone, turbulent motions are not resolved accurately, posing a challenge to numerical simulations. The representation of turbulence is also highly sensitive to the choice of closure model. Here, we examine explicit filtering and reconstruction in the gray zone as a technique to better represent atmospheric turbulence. The convective boundary layer is simulated using the Weather Research and Forecasting (WRF) Model with horizontal resolutions ranging from 25 m to 1 km. Four large-eddy simulation (LES) turbulence models are considered: the Smagorinsky model, the TKE-1.5 model, and two versions of the dynamic reconstruction model (DRM). The models are evaluated by their ability to produce consistent mean potential temperature profiles, heat and momentum fluxes, velocity fields, and turbulent kinetic energy spectra as the grids become coarser. The DRM, a mixed model that uses an explicit filtering and reconstruction technique to account for resolvable subfilter-scale (RSFS) stresses, performs very well at resolutions of 500 m and 1 km without any special tuning, whereas the Smagorinsky and TKE-1.5 models produce heavily grid-dependent results.


2018 ◽  
Vol 57 (9) ◽  
pp. 2197-2214 ◽  
Author(s):  
G. A. Efstathiou ◽  
R. S. Plant ◽  
M.-J. M. Bopape

AbstractA scale-dependent Lagrangian-averaged dynamic Smagorinsky subgrid scheme with stratification effects is used to simulate the evolving convective boundary layer of the Wangara (Australia) case study in the gray-zone regime (specifically, for grid lengths from 25 to 400 m). The dynamic Smagorinsky and standard Smagorinsky approaches are assessed for first- and second-order quantities in comparison with results derived from coarse-grained large-eddy simulation (LES) fields. In the LES regime, the subgrid schemes produce very similar results, albeit with some modest differences near the surface. At coarser resolutions, the use of the standard Smagorinsky approach significantly delays the onset of resolved turbulence, with the delay increasing with coarsening resolution. In contrast, the dynamic Smagorinsky scheme much improves the spinup and so is also able to maintain consistency with the LES temperature profiles at the coarser resolutions. Moreover, the resolved part of the turbulence reproduces well the turbulence profiles obtained from the coarse-grained fields, especially in the near gray zone. The dynamic scheme does become somewhat overenergetic with further coarsening of the resolution, especially near the surface. The dynamic scheme reaches its limit in the current configuration when the test filter starts to sample at the unresolved scales, returning very small Smagorinsky coefficients. Sensitivity tests reveal that the dynamic model can adapt to changes in the imposed numerical or subgrid diffusion by adjusting the Smagorinsky constant to the changing flow field and minimizing the dissipation effects on the resolved turbulence structures.


Sign in / Sign up

Export Citation Format

Share Document