scholarly journals ENSO Effects on Annual Variations of Summer Precipitation Stable Isotopes in Lhasa, Southern Tibetan Plateau

2018 ◽  
Vol 31 (3) ◽  
pp. 1173-1182 ◽  
Author(s):  
Jing Gao ◽  
You He ◽  
Valerie Masson-Delmotte ◽  
Tandong Yao

Abstract Although El Niño–Southern Oscillation (ENSO) influences the Indian summer monsoon, its impact on moisture transport toward the southern Tibetan Plateau (TP) remains poorly understood. Precipitation stable isotopes are useful indices for climate change in the TP. Classical interpretations of variations of precipitation stable isotopes focus on the local surface air temperature or precipitation amount. However, several of the latest studies suggested they may correlate with large-scale modes of variability, such as ENSO. This paper presents a detailed study of ENSO’s effect on annual variations of the oxygen stable isotopic composition of precipitation (δ18Op) at Lhasa in the southern TP for up to 10 years. The stable isotopic composition of water vapor from satellite data [Tropospheric Emission Spectrometer (TES)] and simulations from an isotopically enabled atmospheric general circulation model (zoomed LMDZiso) are used to explore the mechanism that leads to variations of δ18Op at Lhasa. Statistically significant correlations between δ18Op and ENSO indices [Southern Oscillation index (SOI) and Niño-3.4 sea surface temperature index (Niño-3.4)] are observed. This paper shows that ENSO’s effects on the location and intensity of convection over the Arabian Sea, the Bay of Bengal, and the tropical Indian Ocean, along moisture transport paths toward Lhasa, further impact convection from the northern Tibetan Plateau. The changing of this convection results in lower δ18Op at Lhasa in 2007, a La Niña year, and higher δ18Op in 2006, an El Niño year. The study presented here confirms that the regional upstream convection related to ENSO teleconnections plays an important role in variations of δ18Op at the interannual scale and that the more depleted oxygen stable isotopic composition of vapor (δ18Oυ) from the northwestern region of India during a La Niña year intensifies the lower δ18Op at Lhasa in a La Niña year. The study’s results have implications for the interpretation of past variations of archives with precipitation stable isotopes, such as ice cores, tree rings, lake sediments, and speleothems, in this region.

2020 ◽  
Vol 34 (24) ◽  
pp. 4675-4696 ◽  
Author(s):  
Daniel Dores ◽  
Craig R. Glenn ◽  
Giuseppe Torri ◽  
Robert B. Whittier ◽  
Brian N. Popp

2020 ◽  
Author(s):  
Martin Kurek ◽  
Aron Stubbins ◽  
Travis Drake ◽  
Jose Mauro Moura ◽  
Robert Holmes ◽  
...  

Abstract As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with little attention given to carbon dynamics in fluvial ecosystems. We compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 TgCyr-1 more dissolved organic carbon (DOC) than the normal period, an increase greater than annual Mississippi River DOC export. Using ultra-high-resolution mass spectrometry, we detected both seasonal and inter-annual variations in dissolved organic matter (DOM) compositions, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, demonstrating that ENSO events impact DOM compositions exported to the Atlantic Ocean.


2017 ◽  
Vol 17 (9) ◽  
pp. 6125-6151 ◽  
Author(s):  
Harald Sodemann ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Mark Bitter ◽  
Ulrich Corsmeier ◽  
...  

Abstract. Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15–30 s, resulting in an average horizontal resolution of about 1–2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability due to changes in the large-scale circulation. During a period marked by a strong inversion at the top of the marine boundary layer, vertical gradients in stable isotopes reached up to 25.4 ‰ 100 m−1 for δD and 24.0 ‰ 100 m−1 for the d-excess.


2015 ◽  
Vol 12 (4) ◽  
pp. 3919-3944 ◽  
Author(s):  
Y. Tang ◽  
H. Pang ◽  
W. Zhang ◽  
Y. Li ◽  
S. Wu ◽  
...  

Abstract. In the Asian monsoon region, variations in the stable isotopic composition of speleothems have often been attributed to the "amount effect". However, an increasing number of studies suggest that the "amount effect" in local precipitation is insignificant or even non-existent. To explore this issue further, we examined the variability of daily stable isotopic composition (δ18O) in summer precipitation of 2012–2014 in Nanjing, East China. We found that δ18O was not significantly correlated with local rainfall amount, but could be linked to changes in the location and rainout processes of precipitation source regions. Our findings suggest that the stable isotopes in precipitation could signal the location shift of precipitation source regions in the intertropical convergence zone (ITCZ) over the course of the monsoon season. As a result, changes in moisture source location and upstream rainout effect should be taken into account when interpreting the stable isotopic composition of speleothems in the Asian monsoon region.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2004 ◽  
Vol 35 (2) ◽  
pp. 119-137 ◽  
Author(s):  
S.D. Gurney ◽  
D.S.L. Lawrence

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of δ18O and δD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740–970 m a.s.l.). Snowpack data display an increase in the mean values of δ18O (increasing from a mean value of −13.51 to −11.49‰ between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the δ18O–δD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2.This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of δD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in δ18O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.


2021 ◽  
Vol 13 (14) ◽  
pp. 7987
Author(s):  
Mehmet Balcilar ◽  
Elie Bouri ◽  
Rangan Gupta ◽  
Christian Pierdzioch

We use the heterogenous autoregressive (HAR) model to compute out-of-sample forecasts of the monthly realized variance (RV) of movements of the spot and futures price of heating oil. We extend the HAR–RV model to include the role of El Niño and La Niña episodes, as captured by the Equatorial Southern Oscillation Index (EQSOI). Using data from June 1986 to April 2021, we show evidence for several model configurations that both El Niño and La Niña phases contain information useful for forecasting subsequent to the realized variance of price movements beyond the predictive value already captured by the HAR–RV model. The predictive value of La Niña phases, however, seems to be somewhat stronger than the predictive value of El Niño phases. Our results have important implications for investors, as well as from the perspective of sustainable decisions involving the environment.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


Sign in / Sign up

Export Citation Format

Share Document