Precipitation–Radiation–Circulation Feedback Processes Associated with Structural Changes of the ITCZ in a Warming Climate during 1980–2014: An Observational Portrayal

2020 ◽  
Vol 33 (20) ◽  
pp. 8737-8749 ◽  
Author(s):  
William K. M. Lau ◽  
Weichen Tao

AbstractIn this study, long-term structural changes in the intertropical convergence zone (ITCZ) and associated precipitation–radiation–circulation feedback processes are examined using multiple sources of reanalysis data for temperature, winds, moisture, and observed precipitation and outgoing longwave radiation (OLR) during 1980–2014. Consistent with CMIP5 climate model projections of the “deep tropical squeeze” under greenhouse warming, this period witnessed a warming and wetting (increased specific humidity) global trend, characterized by a narrowing of the ITCZ core with increased precipitation, coupled to widespread tropospheric drying (deficient relative humidity), increased OLR in the subtropics and midlatitudes, a widening of the descending branches of the Hadley circulation, and a poleward shift of the jet streams in both hemispheres. The widespread tropospheric drying stems from 1) a faster rate of increased saturated water vapor with warming, relative to the increase in ambient moisture due to convective and large-scale transport, and 2) enhanced anomalous subsidence, and low-level moisture divergence in the subtropics and midlatitudes. The long-term trend in enhanced precipitation (latent heating) in the ITCZ core region is strongly coupled to increasing OLR (radiative cooling to space) in the expanding dry zones, particularly over land regions in the subtropics and midlatitudes, arguably as a necessary condition for global thermodynamic energy balance. Analyses of the trend patterns in vertical profiles of p velocity, temperature, and relative humidity with respect to ITCZ precipitation rate and OLR reveal that the contrast between the wet and dry regions in the troposphere has been increasing globally, with the ITCZ core getting wetter and contracting, while the marginal convective and dry zones are getting drier and expanding.

2009 ◽  
Vol 22 (8) ◽  
pp. 1934-1943 ◽  
Author(s):  
David W. J. Thompson ◽  
Susan Solomon

Abstract The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model. Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.


2009 ◽  
Vol 22 (22) ◽  
pp. 5820-5838 ◽  
Author(s):  
Mark P. McCarthy ◽  
P. W. Thorne ◽  
H. A. Titchner

Abstract A new analysis of historical radiosonde humidity observations is described. An assessment of both known and unknown instrument and observing practice changes has been conducted to assess their impact on bias and uncertainty in long-term trends. The processing of the data includes interpolation of data to address known sampling bias from missing dry day and cold temperature events, a first-guess adjustment for known radiosonde model changes, and a more sophisticated ensemble of estimates based on 100 neighbor-based homogenizations. At each stage the impact and uncertainty of the process has been quantified. The adjustments remove an apparent drying over Europe and parts of Asia and introduce greater consistency between temperature and specific humidity trends from day and night observations. Interannual variability and trends at the surface are shown to be in good agreement with independent in situ datasets, although some steplike discrepancies are apparent between the time series of relative humidity at the surface. Adjusted trends, accounting for documented and undocumented break points and their uncertainty, across the extratropical Northern Hemisphere lower and midtroposphere show warming of 0.1–0.4 K decade−1 and moistening on the order of 1%–5% decade−1 since 1970. There is little or no change in the observed relative humidity in the same period, consistent with climate model expectation of a positive water vapor feedback in the extratropics with near-constant relative humidity.


2021 ◽  
Vol 34 (10) ◽  
pp. 4043-4068
Author(s):  
Liming Zhou ◽  
Yuhong Tian ◽  
Nan Wei ◽  
Shu-peng Ho ◽  
Jing Li

AbstractTurbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.


2008 ◽  
Vol 21 (22) ◽  
pp. 6052-6059 ◽  
Author(s):  
B. Timbal ◽  
P. Hope ◽  
S. Charles

Abstract The consistency between rainfall projections obtained from direct climate model output and statistical downscaling is evaluated. Results are averaged across an area large enough to overcome the difference in spatial scale between these two types of projections and thus make the comparison meaningful. Undertaking the comparison using a suite of state-of-the-art coupled climate models for two forcing scenarios presents a unique opportunity to test whether statistical linkages established between large-scale predictors and local rainfall under current climate remain valid in future climatic conditions. The study focuses on the southwest corner of Western Australia, a region that has experienced recent winter rainfall declines and for which climate models project, with great consistency, further winter rainfall reductions due to global warming. Results show that as a first approximation the magnitude of the modeled rainfall decline in this region is linearly related to the model global warming (a reduction of about 9% per degree), thus linking future rainfall declines to future emission paths. Two statistical downscaling techniques are used to investigate the influence of the choice of technique on projection consistency. In addition, one of the techniques was assessed using different large-scale forcings, to investigate the impact of large-scale predictor selection. Downscaled and direct model projections are consistent across the large number of models and two scenarios considered; that is, there is no tendency for either to be biased; and only a small hint that large rainfall declines are reduced in downscaled projections. Among the two techniques, a nonhomogeneous hidden Markov model provides greater consistency with climate models than an analog approach. Differences were due to the choice of the optimal combination of predictors. Thus statistically downscaled projections require careful choice of large-scale predictors in order to be consistent with physically based rainfall projections. In particular it was noted that a relative humidity moisture predictor, rather than specific humidity, was needed for downscaled projections to be consistent with direct model output projections.


Author(s):  
Raquel Barata ◽  
Raquel Prado ◽  
Bruno Sansó

Abstract. We present a data-driven approach to assess and compare the behavior of large-scale spatial averages of surface temperature in climate model simulations and in observational products. We rely on univariate and multivariate dynamic linear model (DLM) techniques to estimate both long-term and seasonal changes in temperature. The residuals from the DLM analyses capture the internal variability of the climate system and exhibit complex temporal autocorrelation structure. To characterize this internal variability, we explore the structure of these residuals using univariate and multivariate autoregressive (AR) models. As a proof of concept that can easily be extended to other climate models, we apply our approach to one particular climate model (MIROC5). Our results illustrate model versus data differences in both long-term and seasonal changes in temperature. Despite differences in the underlying factors contributing to variability, the different types of simulation yield very similar spectral estimates of internal temperature variability. In general, we find that there is no evidence that the MIROC5 model systematically underestimates the amplitude of observed surface temperature variability on multi-decadal timescales – a finding that has considerable relevance regarding efforts to identify anthropogenic “fingerprints” in observational surface temperature data. Our methodology and results present a novel approach to obtaining data-driven estimates of climate variability for purposes of model evaluation.


Author(s):  
C R McInnes

The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures.


2020 ◽  
Author(s):  
Andrew Western ◽  
Danlu Guo ◽  
Arash Parehkar ◽  
Zitian Gao ◽  
Dongryeol Ryu ◽  
...  

<p>Irrigation water is an expensive and limited resource, and optimized water use is beneficial to saving water while boosting productivity. This project aims to develop integrated irrigation scheduling, benchmarking and forecasting capabilities to inform optimal irrigation practices and the suitable tools and information required for this. To achieve this, we designed a three-year project which combines simulations and field-scale monitoring. One aspect of this project is to develop a comprehensive uncertainty framework to better understand the uncertainty in scheduling, which is informed by soil water models, along with multiple sources of information such as soil, crop, weather and field management. Besides, we are also conducting large-scale benchmarking study to identify better irrigation practices across multiple farms, fields, crop types and seasons. The project outcomes will be integrated with our partner, Rubicon’s water ordering portal and adopted by most Australian irrigation farmers, with significant long-term benefits expected in agricultural production and water conservation. </p>


2003 ◽  
Vol 3 (5) ◽  
pp. 1791-1806 ◽  
Author(s):  
W. Haag ◽  
B. Kärcher ◽  
J. Ström ◽  
A. Minikin ◽  
U. Lohmann ◽  
...  

Abstract. Factors controlling the microphysical link between distributions of relative humidity above ice saturation in the upper troposphere and lowermost stratosphere and cirrus clouds are examined with the help of microphysical trajectory simulations. Our findings are related to results from aircraft measurements and global model studies. We suggest that the relative humidities at which ice crystals form in the atmosphere can be inferred from in situ measurements of water vapor and temperature close to, but outside of, cirrus clouds. The comparison with concomitant measurements performed inside cirrus clouds provides a clue to freezing mechanisms active in cirrus. The analysis of field data taken at northern and southern midlatitudes in fall 2000 reveals distinct differences in cirrus cloud freezing thresholds. Homogeneous freezing is found to be the most likely mechanism by which cirrus form at southern hemisphere midlatitudes. The results provide evidence for the existence of heterogeneous freezing in cirrus in parts of the polluted northern hemisphere, but do not suggest that cirrus clouds in this region form exclusively on heterogeneous ice nuclei, thereby emphasizing the crucial importance of homogeneous freezing. The key features of distributions of upper tropospheric relative humidity simulated by a global climate model are shown to be in general agreement with both, microphysical simulations and field observations, delineating a feasible method to include and validate ice supersaturation in other large-scale atmospheric models, in particular chemistry-transport and weather forecast models.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Juan P. Boisier ◽  
Camila Alvarez-Garreton ◽  
Raúl R. Cordero ◽  
Alessandro Damiani ◽  
Laura Gallardo ◽  
...  

The socio-ecological sensitivity to water deficits makes Chile highly vulnerable to global change. New evidence of a multi-decadal drying trend and the impacts of a persistent drought that since 2010 has affected several regions of the country, reinforce the need for clear diagnoses of the hydro-climate changes in Chile. Based on the analysis of long-term records (50+ years) of precipitation and streamflow, we confirm a tendency toward a dryer condition in central-southern Chile (30–48°S). We describe the geographical and seasonal character of this trend, as well as the associated large-scale circulation patterns. When a large ensemble of climate model simulations is contrasted to observations, anthropogenic forcing appears as the leading factor of precipitation change. In addition to a drying trend driven by greenhouse gas forcing in all seasons, our results indicate that the Antarctic stratospheric ozone depletion has played a major role in the summer rainfall decline. Although average model results agree well with the drying trend’s seasonal character, the observed change magnitude is two to three times larger than that simulated, indicating a potential underestimation of future projections for this region. Under present-day carbon emission rates, the drying pathway in Chile will likely prevail during the next decades, although the summer signal should weaken as a result of the gradual ozone layer recovery. The trends and scenarios shown here pose substantial stress on Chilean society and its institutions, and call for urgent action regarding adaptation measures.


2019 ◽  
Author(s):  
Meryem Tanarhte ◽  
Sara Bacer ◽  
Susannah M. Burrows ◽  
J. Alex Huffman ◽  
Kyle M. Pierce ◽  
...  

Abstract. Primary biological aerosol particles (PBAPs) may impact human health and aerosol-cloud-climate interactions. The role of PBAPs in the earth system is associated with large uncertainties, for example of source estimates and the atmospheric lifetime. We used a chemistry-climate model to simulate PBAPs in the atmosphere including bacteria and fungal spores. Three fungal spore emission parameterizations have been evaluated against an updated set of spore counts synthesized from observations reported in the literature. The comparison indicates an optimal fit for the emission parameterization proposed by Heald and Spracklen (2009) and adapted by Hoose et al. (2010) for particle sizes of 5 µm or 3 µm, although the model still overpredicts PBAP concentrations in some locations. The correlations between the spore count observations and meteorological parameters simulated by the model show a strong dependence on the leaf area index in non-urban areas and the specific humidity in urban areas. Additional evaluation was performed by comparing our combined bacteria and fungal spore simulations to a global dataset of fluorescent biological aerosol particle (FBAP) concentrations. The model predicts the total sum of measured PBAP concentrations relatively well, typically within a factor of two of FBAP. Further, the modeled fungal spore results deviate from the FBAP concentrations when used as a rough proxy for spores, depending on the particle size used in the parametrization. Uncertainties related to technical aspects of the FBAP and direct-counting spore measurements challenge the ability to further refine quantitative comparison on this scale. Additional long-term data of better quality are needed to improve emission parameterizations.


Sign in / Sign up

Export Citation Format

Share Document