scholarly journals Winter Orographic Precipitation Ratios in the Sierra Nevada—Large-Scale Atmospheric Circulations and Hydrologic Consequences

2004 ◽  
Vol 5 (6) ◽  
pp. 1102-1116 ◽  
Author(s):  
Michael Dettinger ◽  
Kelly Redmond ◽  
Daniel Cayan

Abstract The extent to which winter precipitation is orographically enhanced within the Sierra Nevada of California varies from storm to storm, and season to season, from occasions when precipitation rates at low and high altitudes are almost the same to instances when precipitation rates at middle elevations (considered here) can be as much as 30 times more than at the base of the range. Analyses of large-scale conditions associated with orographic precipitation variations during storms and seasons from 1954 to 1999 show that strongly orographic storms most commonly have winds that transport water vapor across the range from a more nearly westerly direction than during less orographic storms and than during the largest overall storms, and generally the strongly orographic storms are less convectively stable. Strongly orographic conditions often follow heavy precipitation events because both of these wind conditions are present in midlatitude cyclones that form the cores of many Sierra Nevada storms. Storms during La Niña winters tend to yield larger orographic ratios (ORs) than do those during El Niños. A simple experiment with a model of streamflows from a river basin draining the central Sierra Nevada indicates that, for a fixed overall basin-precipitation amount, a decrease in OR contributes to larger winter flood peaks and smaller springtime flows, and thus to an overall hastening of the runoff season.

2018 ◽  
Vol 146 (4) ◽  
pp. 1023-1044 ◽  
Author(s):  
David J. Purnell ◽  
Daniel J. Kirshbaum

The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate [Formula: see text], the impinging horizontal moisture flux I, and the low-level static stability. Both WF and WS events exhibit large [Formula: see text] and I, and thus, heavy orographic precipitation, which is greatly enhanced in amplitude and areal extent by the seeder–feeder process. However, the stronger stability of the WF periods, particularly within the frontal inversion (even when it lies above crest level), causes their precipitation enhancement to weaken and shift upstream. In contrast, the small [Formula: see text] and I, larger static stability, and absence of stratiform feeder clouds in the nominally unsaturated and convective PF events yield much lighter time- and area-averaged precipitation. Modest enhancements still occur over the windward slopes due to the local development and invigoration of shallow convective showers.


2010 ◽  
Vol 25 (4) ◽  
pp. 1124-1141 ◽  
Author(s):  
Xiaohui Shi ◽  
Xiangde Xu ◽  
Chungu Lu

Abstract In the winter of 2008, China experienced once-in-50-yr (or once in 100 yr for some regions) snow and ice storms. These storms brought huge socio economical impacts upon the Chinese people and government. Although the storms had been predicted, their severity and persistence were largely underestimated. In this study, these cases were revisited and comprehensive analyses of the storms’ dynamic and thermodynamic structures were conducted. These snowstorms were also compared with U.S. east coast snowstorms. The results from this study will provide insights on how to improve forecasts for these kinds of snowstorms. The analyses demonstrated that the storms exhibited classic patterns of large-scale circulation common to these types of snowstorms. However, several physical processes were found to be unique and thought to have played crucial roles in intensifying and prolonging China’s great snowstorms of 2008. These include a subtropical high over the western Pacific, an upper-level jet stream, and temperature and moisture inversions. The combined effects of these dynamic and thermodynamic structures are responsible for the development of the storms into one of the most disastrous events in Chinese history.


2012 ◽  
Vol 12 (3) ◽  
pp. 777-784 ◽  
Author(s):  
P. Horton ◽  
M. Jaboyedoff ◽  
R. Metzger ◽  
C. Obled ◽  
R. Marty

Abstract. An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.


2015 ◽  
Vol 16 (3) ◽  
pp. 1184-1206 ◽  
Author(s):  
Michael A. Alexander ◽  
James D. Scott ◽  
Dustin Swales ◽  
Mimi Hughes ◽  
Kelly Mahoney ◽  
...  

Abstract Two methods were used to identify the paths of moisture transport that reach the U.S. Intermountain West (IMW) during heavy precipitation events in winter. In the first, the top 150 precipitation events at stations located within six regions in the IMW were identified, and then back trajectories were initiated at 6-h intervals on those days at the four Climate Forecast System Reanalysis grid points nearest the stations. The second method identified the leading patterns of integrated water vapor transport (IVT) using the three leading empirical orthogonal functions of IVT over land that were first normalized by the local standard deviation. The top 1% of the associated 6-hourly time series was used to construct composites of IVT, atmospheric circulation, and precipitation. The results from both methods indicate that moisture originating from the Pacific that leads to extreme precipitation in the IMW during winter takes distinct pathways and is influenced by gaps in the Cascades (Oregon–Washington), the Sierra Nevada (California), and Peninsular Ranges (from Southern California through Baja California). The moisture transported along these routes appears to be the primary source for heavy precipitation for the mountain ranges in the IMW. The synoptic conditions associated with the dominant IVT patterns include a trough–ridge couplet at 500 hPa, with the trough located northwest of the ridge where the associated circulation funnels moisture from the west-southwest through the mountain gaps and into the IMW.


2015 ◽  
Vol 6 (1) ◽  
pp. 907-941
Author(s):  
M. Messmer ◽  
J. J. Gómez-Navarro ◽  
C. C. Raible

Abstract. Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over Central Europe and the Alps. As the relevant processes triggering these so-called Vb-events and their impact on extreme precipitation are not yet fully understood, this study focusses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb-situations. Precipitation in the ERA-Interim and the E-OBS datasets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two datasets. Both datasets exhibit high variability in precipitation amounts among different Vb-events. While only 23 % of all Vb-events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the Alpine region are induced by Vb-events, although Vb-cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb-events, the analysis of the 10 heaviest and lowest precipitation Vb-events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the Alps. These effects are the main reasons for a disastrous outcome of Vb-events, and consequently are absent in the Vb-events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb-events is mainly related to large-scale dynamics rather than to thermodynamic processes.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 193 ◽  
Author(s):  
Chaoxing Sun ◽  
Guohe Huang ◽  
Yurui Fan

The unique characteristics of topography, landforms, and climate in the Loess Plateau make it especially important to investigate its extreme precipitation characteristics. Daily precipitation data of Loess Plateau covering a period of 1959–2017 are applied to evaluate the probability features of five precipitation indicators: the amount of extreme heavy precipitation (P95), the days with extreme heavy precipitation, the intensity of extreme heavy precipitation (I95), the continuous dry days, and the annual total precipitation. In addition, the joint risk of different combinations of precipitation indices is quantitatively evaluated based on the copula method. Moreover, the risk and severity of each extreme heavy precipitation factor corresponding to 50-year joint return period are achieved through inverse derivation process. Results show that the precipitation amount and intensity of the Loess Plateau vary greatly in spatial distribution. The annual precipitation in the northwest region may be too concentrated in several rainstorms, which makes the region in a serious drought state for most of the year. At the level of 10-year return period, more than five months with no precipitation events would occur in the Northwest Loess Plateau. While, P95 or I95 events of 100-year level may be encountered in a 50-year return period and in the southeastern region, which means there are foreseeable long-term extreme heavy precipitation events.


2013 ◽  
Vol 26 (10) ◽  
pp. 3209-3230 ◽  
Author(s):  
Anthony M. DeAngelis ◽  
Anthony J. Broccoli ◽  
Steven G. Decker

Abstract Climate model simulations of daily precipitation statistics from the third phase of the Coupled Model Intercomparison Project (CMIP3) were evaluated against precipitation observations from North America over the period 1979–99. The evaluation revealed that the models underestimate the intensity of heavy and extreme precipitation along the Pacific coast, southeastern United States, and southern Mexico, and these biases are robust among the models. The models also overestimate the intensity of light precipitation events over much of North America, resulting in fairly realistic mean precipitation in many places. In contrast, heavy precipitation is simulated realistically over northern and eastern Canada, as is the seasonal cycle of heavy precipitation over a majority of North America. An evaluation of the simulated atmospheric dynamics and thermodynamics associated with extreme precipitation events was also conducted using the North American Regional Reanalysis (NARR). The models were found to capture the large-scale physical mechanisms that generate extreme precipitation realistically, although they tend to overestimate the strength of the associated atmospheric circulation features. This suggests that climate model deficiencies such as insufficient spatial resolution, inadequate representation of convective precipitation, and overly smoothed topography may be more important for biases in simulated heavy precipitation than errors in the large-scale circulation during extreme events.


2005 ◽  
Vol 133 (10) ◽  
pp. 2834-2859 ◽  
Author(s):  
Vanda Grubišić ◽  
Ramesh K. Vellore ◽  
Arlen W. Huggins

Abstract The skill of a mesoscale model in predicting orographic precipitation during high-impact precipitation events in the Sierra Nevada, and the sensitivity of that skill to the choice of the microphysical parameterization and horizontal resolution, are examined. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and four bulk microphysical parameterization schemes examined are the Dudhia ice scheme, and the Schultz, GSFC, and Reisner2 mixed-phase schemes. The verification dataset consists of ground precipitation measurements from a selected number of wintertime heavy precipitation events documented during the Sierra Cooperative Pilot Project in the 1980s. At high horizontal resolutions, the predicted spatial precipitation patterns on the upwind Sierra Nevada slopes were found to have filamentary structure, with precipitation amounts over the transverse upwind ridges exceeding severalfold those over the nearby deep river valleys. The verification results show that all four tested bulk microphysical schemes in MM5 produce overprediction of precipitation on both the windward and lee slopes of the Sierra Nevada. The examined accuracy measures indicate that the Reisner2 scheme displays the best overall performance on both sides of the mountain range. The examined statistical skill scores on the other hand reveal that, regardless of the microphysical scheme used, the skill of the MM5 model in predicting the observed spatial distribution of the Sierra Nevada orographic precipitation is fairly low, that this skill is not improved by increasing the horizontal resolution of the model simulations, and that on average the quantitative precipitation forecasting (QPF) skill is better on the windward than on the lee side. Furthermore, a significance test shows that differences in skill scores obtained with the four microphysical schemes are not statistically significant.


2014 ◽  
Vol 27 (15) ◽  
pp. 5941-5963 ◽  
Author(s):  
Xiang Gao ◽  
C. Adam Schlosser ◽  
Pingping Xie ◽  
Erwan Monier ◽  
Dara Entekhabi

Abstract An analogue method is presented to detect the occurrence of heavy precipitation events without relying on modeled precipitation. The approach is based on using composites to identify distinct large-scale atmospheric conditions associated with widespread heavy precipitation events across local scales. These composites, exemplified in the south-central, midwestern, and western United States, are derived through the analysis of 27-yr (1979–2005) Climate Prediction Center (CPC) gridded station data and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). Circulation features and moisture plumes associated with heavy precipitation events are examined. The analogues are evaluated against the relevant daily meteorological fields from the MERRA reanalysis and achieve a success rate of around 80% in detecting observed heavy events within one or two days. The method also captures the observed interannual variations of seasonal heavy events with higher correlation and smaller RMSE than MERRA precipitation. When applied to the same 27-yr twentieth-century climate model simulations from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), the analogue method produces a more consistent and less uncertain number of seasonal heavy precipitation events with observation as opposed to using model-simulated precipitation. The analogue method also performs better than model-based precipitation in characterizing the statistics (minimum, lower and upper quartile, median, and maximum) of year-to-year seasonal heavy precipitation days. These results indicate the capability of CMIP5 models to realistically simulate large-scale atmospheric conditions associated with widespread local-scale heavy precipitation events with a credible frequency. Overall, the presented analyses highlight the improved diagnoses of the analogue method against an evaluation that considers modeled precipitation alone to assess heavy precipitation frequency.


2019 ◽  
Vol 58 (3) ◽  
pp. 447-466 ◽  
Author(s):  
Shealynn R. Cloutier-Bisbee ◽  
Ajay Raghavendra ◽  
Shawn M. Milrad

AbstractHeat waves are increasing in frequency, duration, and intensity and are strongly linked to anthropogenic climate change. However, few studies have examined heat waves in Florida, despite an older population and increasingly urbanized land areas that make it particularly susceptible to heat impacts. Heavy precipitation events are also becoming more frequent and intense; recent climate model simulations showed that heavy precipitation in the three days after a Florida heat wave follow these trends, yet the underlying dynamic and thermodynamic mechanisms have not been investigated. In this study, a heat wave climatology and trend analysis are developed from 1950 to 2016 for seven major airports in Florida. Heat waves are defined based on the 95th percentile of daily maximum, minimum, and mean temperatures. Results show that heat waves exhibit statistically significant increases in frequency and duration at most stations, especially for mean and minimum temperature events. Frequency and duration increases are most prominent at Tallahassee, Tampa, Miami, and Key West. Heat waves in northern Florida are characterized by large-scale continental ridging, while heat waves in central and southern Florida are associated with a combination of a continental ridge and a westward extension of the Bermuda–Azores high. Heavy precipitation events that follow a heat wave are characterized by anomalously large ascent and moisture, as well as strong instability. Light precipitation events in northern Florida are characterized by advection of drier air from the continent, while over central and southern Florida, prolonged subsidence is the most important difference between heavy and light events.


Sign in / Sign up

Export Citation Format

Share Document