scholarly journals A Bayesian Approach to Predictor Selection for Seasonal Streamflow Forecasting

2012 ◽  
Vol 13 (1) ◽  
pp. 155-171 ◽  
Author(s):  
David E. Robertson ◽  
Q. J. Wang

Abstract Statistical methods commonly used for forecasting climate and streamflows require the selection of appropriate predictors. Poorly designed predictor selection procedures can result in poor forecasts for independent events. This paper introduces a predictor selection method for the Bayesian joint probability modeling approach to seasonal streamflow forecasting at multiple sites. The method compares forecasting models using a pseudo-Bayes factor (PsBF). A stepwise expansion of a base model is carried out by including the candidate predictor with the highest PsBF that exceeds a selection threshold. Predictors representing the initial catchment conditions are selected on their ability to forecast streamflows and predictors representing future climate influences are selected on their ability to forecast rainfall. The final forecasting model combines selected predictors representing both initial catchment conditions and future climate influences to jointly forecast seasonal streamflows and rainfall. Applications of the predictor selection method to two catchments in eastern Australia show that the best predictors representing initial catchment conditions and future climate influences vary with location and forecast date. Antecedent streamflows are the best indicator of the initial catchment conditions. Predictors representing future climate influences are only selected for forecasts made between July and January. Indicators of El Niño dominate the selected predictors representing future climate influences. The skill of streamflow forecasts varies considerably between locations and throughout the year. Skill scores for the perennial streams of the Goulburn River catchment exceed 40% for several seasons, while for the intermittent streams in the Burdekin River catchment, the skill scores are lower.

2012 ◽  
Vol 9 (7) ◽  
pp. 8701-8736 ◽  
Author(s):  
D. E. Robertson ◽  
P. Pokhrel ◽  
Q. J. Wang

Abstract. Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1) when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2) when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3) when the initial catchment condition is near saturation intermittently throughout the historical record.


2012 ◽  
Vol 9 (10) ◽  
pp. 11199-11225
Author(s):  
P. Pokhrel ◽  
D. E. Robertson ◽  
Q. J. Wang

Abstract. Hydrological post-processors refer here to statistical models that are applied to hydrological model predictions to further reduce prediction errors and to quantify remaining uncertainty. For streamflow predictions, post-processors are generally applied to daily or sub-daily time scales. For many applications such as seasonal streamflow forecasting and water resources assessment, monthly volumes of streamflows are of primary interest. While it is possible to aggregate post-processed daily or sub-daily predictions to monthly time scales, the monthly volumes so produced may not have the least errors achievable and may not be reliable in uncertainty distributions. Post-processing directly at the monthly time scale is likely to be more effective. In this study, we investigate the use of a Bayesian joint probability modelling approach to directly post-process model predictions of monthly streamflow volumes. We apply the BJP post-processor to 18 catchments located in eastern Australia and demonstrate its effectiveness in reducing prediction errors and quantifying prediction uncertainty.


2013 ◽  
Vol 17 (2) ◽  
pp. 579-593 ◽  
Author(s):  
D. E. Robertson ◽  
P. Pokhrel ◽  
Q. J. Wang

Abstract. Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1) when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2) when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3) when the initial catchment condition is near saturation intermittently throughout the historical record.


1998 ◽  
Vol 34 (11) ◽  
pp. 3035-3044 ◽  
Author(s):  
Thomas C. Piechota ◽  
Francis H. S. Chiew ◽  
John A. Dracup ◽  
Thomas A. McMahon

2017 ◽  
Vol 21 (3) ◽  
pp. 1573-1591 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Florian Pappenberger ◽  
Charles Perrin

Abstract. Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.


2021 ◽  
Vol 13 (3) ◽  
pp. 205-223
Author(s):  
Alexandre C. Costa ◽  
Alvson B. S. Estacio ◽  
Francisco de A. de Souza Filho ◽  
Iran E. Lima Neto

2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Author(s):  
R. Ballini ◽  
M. Figueiredo ◽  
S. Soares ◽  
M. Andrade ◽  
F. Gomide

2016 ◽  
Author(s):  
Louise Crochemore ◽  
M.-H. Ramos ◽  
Florian Pappenberger

Abstract. Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias corrected precipitation and streamflow ensemble forecasts in sixteen catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy, and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e., ESP method), is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contribute mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping of daily values is successful in improving forecast reliability.


Sign in / Sign up

Export Citation Format

Share Document