The Seasonal Nature of Extreme Hydrological Events in the Northeastern United States
Abstract Recent analyses of extreme hydrological events across the United States, including those summarized in the recent U.S. Third National Climate Assessment (May 2014), show that extremely large (extreme) precipitation and streamflow events are increasing over much of the country, with particularly steep trends over the northeastern United States. The authors demonstrate that the increase in extreme hydrological events over the northeastern United States is primarily a warm season phenomenon and is caused more by an increase in frequency than magnitude. The frequency of extreme warm season events peaked during the 2000s; a secondary peak occurred during the 1970s; and the calmest decade was the 1960s. Cold season trends during the last 30–50 yr are weaker. Since extreme precipitation events in this region tend to be larger during the warm season than during the cold season, trend analyses based on annual precipitation values are influenced more by warm season than by cold season trends. In contrast, the magnitude of extreme streamflow events at stations used for climatological analyses tends to be larger during the cold season: therefore, extreme event analyses based on annual streamflow values are overwhelmingly influenced by cold season, and therefore weaker, trends. These results help to explain an apparent discrepancy in the literature, whereby increasing trends in extreme precipitation events appear to be significant and ubiquitous across the region, while trends in streamflow appear less dramatic and less spatially coherent.