scholarly journals Estimation of Ultraviolet-A Irradiance from Measurements of 368-nm Spectral Irradiance

2005 ◽  
Vol 22 (12) ◽  
pp. 1853-1863 ◽  
Author(s):  
R. H. Grant ◽  
J. R. Slusser

Abstract The estimation of ultraviolet-A (UV-A) radiation across the earth’s surface is needed to model plant productivity and future impacts of ultraviolet-B radiation on plant productivity. We have developed two models to estimate the UV-A irradiance from measurements of the diffuse and global spectral irradiance at 368 nm. The models were developed from 30-min-interval measurements made throughout 2000 at three locations across the United States and evaluated from 30-min measurements made throughout 2000 at three additional locations and throughout 2001 and 2002 at seven locations. UV-A irradiance was best estimated from measured global 368-nm irradiance and empirical functions defining the UV-A and 368-nm irradiance values estimated from a theoretical pseudospherical two-stream discrete-ordinates radiative transfer model. The radiative transfer model provided baseline irradiance relationships between UV-A irradiance and 368-nm spectral irradiance. The semiempirical model estimated the UV-A irradiance at seven locations across the United States with a mean bias error of 0.5 W m−2 and a root-mean-square error of 2 W m−2, corresponding to approximately ±4% of a clear-sky irradiance of 50 W m−2 for a solar zenith angle of 30°. This model error was comparable to the combined effect of previously estimated UV-A and 368-nm irradiance measurement errors.

2017 ◽  
Vol 17 (22) ◽  
pp. 13559-13572 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (US) has increased by 0.58–1.0 Wm−2 a−1 over the 2000–2014 time frame, simultaneously with reductions in US aerosol optical depth (AOD) of 3.3–5.0  ×  10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing US aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000–2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear-sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 Wm−2 a−1 at Goodwin Creek, MS, and +0.93 Wm−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central US. The 1990–2015 trends in the NLDAS SWdn over the central US are also of a similar magnitude to our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central US are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the US, where improvements in air quality due to reductions in the aerosol burden could inadvertently pose an enhanced climate risk.


2007 ◽  
Vol 7 (6) ◽  
pp. 17401-17427
Author(s):  
J. J. Michalsky ◽  
P. W. Kiedron

Abstract. The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 U.S. Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV) radiative transfer model developed by Madronich and his colleagues at the U.S. National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements between available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances that measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. These cases included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.


2017 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (U.S.) has increased by 0.58–1.0 W m−2 a−1 over the 2000–2014 timeframe, simultaneously with reductions in U.S. aerosol optical depth (AOD) of 3.3–5.0 × 10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing U.S. aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000 2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear–sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 W m−2 a−1 at Goodwin Creek, MS, and +0.93 W m−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central U.S. The 1990–2015 trends in the NLDAS SWdn over the central U.S. are also of a similar magnitude as our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central U.S. are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the U.S., where improvements in air quality due to reductions in the aerosol burden could inadvertently increase vulnerability to drought.


2018 ◽  
Vol 146 (11) ◽  
pp. 3927-3944 ◽  
Author(s):  
Lewis Grasso ◽  
Daniel T. Lindsey ◽  
Yoo-Jeong Noh ◽  
Christopher O’Dell ◽  
Ting-Chi Wu ◽  
...  

ABSTRACT In preparation for all-sky satellite radiance assimilation, the Community Radiative Transfer Model (CRTM), version 2.1.3, was used to produce Geostationary Operational Environmental Satellite-12/13 (GOES-12/13) imagery near 3.9 μm. For the current study, model output simulated from different models, microphysics, and weather events was used by the CRTM to generate imagery over and near the United States. A direct comparison of observed and CRTM GOES-12/13 imagery near 3.9 μm revealed that CRTM brightness temperatures of solid-water cold cloud tops were approximately 30 K less than observed values. Two CRTM errors were identified and resolved: 1) a coding error that was found by the CRTM team and 2) incorrect optical properties of ice, resulting in improved values of brightness temperatures. Further, changes in microphysics also contributed to improvements, save for one case. The coding error solution appeared in the publicly released CRTM, version 2.3.0, on 27 November 2017, while the inclusion of the optical property solution is undetermined. Since the CRTM is the radiative transfer model within the operational data assimilation system at the National Centers for Environmental Prediction (NCEP), improvements to both the CRTM and model microphysics will be beneficial for future all-sky radiance assimilation activities.


2008 ◽  
Vol 8 (6) ◽  
pp. 1813-1821 ◽  
Author(s):  
J. J. Michalsky ◽  
P. W. Kiedron

Abstract. The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 US Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV) radiative transfer model developed by Madronich and his colleagues at the US National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements among available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances, measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. Transmittance was calculated by taking the ratios of the measured irradiances to the Langley-derived, top-of-the-atmosphere irradiances. The cases studied included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.


2012 ◽  
Vol 33 (6) ◽  
pp. 1611-1624 ◽  
Author(s):  
Iñigo Mendikoa ◽  
Santiago Pérez-Hoyos ◽  
Agustín Sánchez-Lavega

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


Sign in / Sign up

Export Citation Format

Share Document