scholarly journals Can Gridded Precipitation Data and Phenological Observations Reduce Basis Risk of Weather Index–Based Insurance?

2016 ◽  
Vol 8 (4) ◽  
pp. 409-419 ◽  
Author(s):  
Tobias Dalhaus ◽  
Robert Finger

Abstract Adverse weather events occurring at sensitive stages of plant growth can cause substantial yield losses in crop production. Agricultural insurance schemes can help farmers to protect their income against downside risks. While traditional indemnity-based insurance schemes need governmental support to overcome market failure caused by asymmetric information problems, weather index–based insurance (WII) products represent a promising alternative. In WII the payout depends on a weather index serving as a proxy for yield losses. However, the nonperfect correlation of yield losses and the underlying index, the so-called basis risk, constitutes a key challenge for these products. This study aims to contribute to the reduction of basis risk and thus to the addition of risk-reducing properties of WII. More specifically, the study tests whether grid data for precipitation (vs weather station data) and phenological observations (vs fixed time windows for index determination) that are provided by public institutions can reduce spatial and temporal basis risk and thus improve the performance of WII. An empirical example of wheat production in Germany is used. No differences were found between using gridded and weather station precipitation, whereas the use of phenological observations significantly increases expected utility. However, even if grid data do not yet reduce basis risk, they enable overcoming several disadvantages of using station data and are thus useful for WII applications. Based on the study’s findings and the availability of these data in other countries, a massive potential for improving WII can be concluded.

2018 ◽  
Vol 48 (02) ◽  
pp. 779-815 ◽  
Author(s):  
Wenjun Zhu ◽  
Ken Seng Tan ◽  
Lysa Porth ◽  
Chou-Wen Wang

AbstractAdverse weather-related risk is a main source of crop production loss and a big concern for agricultural insurers and reinsurers. In response, weather risk hedging may be valuable, however, due to basis risk it has been largely unsuccessful to date. This research proposes the Lévy subordinated hierarchical Archimedean copula model in modelling the spatial dependence of weather risk to reduce basis risk. The analysis shows that the Lévy subordinated hierarchical Archimedean copula model can improve the hedging performance through more accurate modelling of the dependence structure of weather risks and is more efficient in hedging extreme downside weather risk, compared to the benchmark copula models. Further, the results reveal that more effective hedging may be achieved as the spatial aggregation level increases. This research demonstrates that hedging weather risk is an important risk management method, and the approach outlined in this paper may be useful to insurers and reinsurers in the case of agriculture, as well as for other related risks in the property and casualty sector.


2021 ◽  
Vol 13 (9) ◽  
pp. 5207
Author(s):  
Zed Zulkafli ◽  
Farrah Melissa Muharam ◽  
Nurfarhana Raffar ◽  
Amirparsa Jajarmizadeh ◽  
Mukhtar Jibril Abdi ◽  
...  

Good index selection is key to minimising basis risk in weather index insurance design. However, interannual, seasonal, and intra-seasonal hydroclimatic variabilities pose challenges in identifying robust proxies for crop losses. In this study, we systematically investigated 574 hydroclimatic indices for their relationships with yield in Malaysia’s irrigated double planting system, using the Muda rice granary as a case study. The responses of seasonal rice yields to seasonal and monthly averages and to extreme rainfall, temperature, and streamflow statistics from 16 years’ observations were examined by using correlation analysis and linear regression. We found that the minimum temperature during the crop flowering to the maturity phase governed yield in the drier off-season (season 1, March to July, Pearson correlation, r = +0.87; coefficient of determination, R2 = 74%). In contrast, the average streamflow during the crop maturity phase regulated yield in the main planting season (season 2, September to January, r = +0.82, R2 = 67%). During the respective periods, these indices were at their lowest in the seasons. Based on these findings, we recommend temperature- and water-supply-based indices as the foundations for developing insurance contracts for the rice system in northern Peninsular Malaysia.


2012 ◽  
Vol 14 (1) ◽  
pp. 20-34 ◽  
Author(s):  
Michael T. Norton ◽  
Calum Turvey ◽  
Daniel Osgood

2020 ◽  
Vol 375 (1810) ◽  
pp. 20190510 ◽  
Author(s):  
Damien Beillouin ◽  
Bernhard Schauberger ◽  
Ana Bastos ◽  
Phillipe Ciais ◽  
David Makowski

Extreme weather increases the risk of large-scale crop failure. The mechanisms involved are complex and intertwined, hence undermining the identification of simple adaptation levers to help improve the resilience of agricultural production. Based on more than 82 000 yield data reported at the regional level in 17 European countries, we assess how climate affected the yields of nine crop species. Using machine learning models, we analyzed historical yield data since 1901 and then focus on 2018, which has experienced a multiplicity and a diversity of atypical extreme climatic conditions. Machine learning models explain up to 65% of historical yield anomalies. We find that both extremes in temperature and precipitation are associated with negative yield anomalies, but with varying impacts in different parts of Europe. In 2018, Northern and Eastern Europe experienced multiple and simultaneous crop failures—among the highest observed in recent decades. These yield losses were associated with extremely low rainfalls in combination with high temperatures between March and August 2018. However, the higher than usual yields recorded in Southern Europe—caused by favourable spring rainfall conditions—nearly offset the large decrease in Northern European crop production. Our results outline the importance of considering single and compound climate extremes to analyse the causes of yield losses in Europe. We found no clear upward or downward trend in the frequency of extreme yield losses for any of the considered crops between 1990 and 2018. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 405 ◽  
Author(s):  
Shreemat Shrestha ◽  
Murray Peel ◽  
Graham Moore

The assessment of direct radiative forcing due to atmospheric aerosols (ADRF) in the Indo Gangetic Plain (IGP), which is a food basket of south Asia, is important for measuring the effect of atmospheric aerosols on the terrestrial ecosystem and for assessing the effect of aerosols on crop production in the region. Existing comprehensive analytical models to estimate ADRF require a large number of input parameters and high processing time. In this context, here, we develop a simple model to estimate daily ADRF at any location on the surface of the IGP through multiple regressions of AErosol RObotic NETwork (AERONET) aerosol optical depth (AOD) and atmospheric water vapour using data from 2002 to 2015 at 10 stations in the IGP. The goodness of fit of the model is indicated by an adjusted R2 value of 0.834. The Jackknife method of deleting one group (station data) was employed to cross validate and study the stability of the regression model. It was found to be robust with an adjusted R2 fluctuating between 0.813 and 0.842. In order to use the year-round ADRF model for locations beyond the AERONET stations in the IGP, AOD, and atmospheric water vapour products from MODIS Aqua and Terra were compared against AERONET station data and they were found to be similar. Using MODIS Aqua and Terra products as input, the year-round ADRF regression was evaluated at the IGP AERONET stations and found to perform well with Pearson correlation coefficients of 0.66 and 0.65, respectively. Using ADRF regression model with MODIS inputs allows for the estimation of ADRF across the IGP for assessing the aerosol impact on ecosystem and crop production.


Sign in / Sign up

Export Citation Format

Share Document