Regional Blood Flow to the Canine Vocal Fold Rest and during Phonation

1989 ◽  
Vol 98 (10) ◽  
pp. 796-802 ◽  
Author(s):  
David P. Arnstein ◽  
Terrence K. Trapp ◽  
Gerald S. Berke ◽  
Manuel Natividad

Recent reports have suggested that blood flow to the vocal fold decreases during phonation. However, these studies relied on indirect measures of blood flow, such as tissue oxygen tension. Among the differing methods of measuring blood flow, one of the most sensitive is the microsphere surface technique. This technique has been effective in assessing the overall and regional blood flow to a number of different organs, including the cochlea. Employing an in vivo canine model, we injected microspheres into the left atrium. From there, they were distributed and became entrapped in the tissues in proportion to blood flow. We measured the blood flow to the entire vocal fold, as well as the lamina propria and muscularis layers. The results revealed a statistically significant (p<.002) increase in blood flow on phonation. The increase, however, was due to increased flow to the muscularis layer. The flow to the lamina propria remained unchanged during phonation.

1964 ◽  
Vol 206 (5) ◽  
pp. 962-966 ◽  
Author(s):  
Marvin B. Bacaner ◽  
James S. Beck

A radioisotope method for measuring regional blood flow in the intestine of the dog in vivo has been favorably compared with measurement by timed collection of total venous outflow. The necessary conditions are a continuous measure of arterial concentration and cumulative regional concentration of radioisotope, an experimentally definable region, and temporary complete retention of tracer. The derivation of the relations used suggests additional applications of the method to other regions of the body.


1997 ◽  
Vol 273 (5) ◽  
pp. G1160-G1167 ◽  
Author(s):  
Edward N. Janoff ◽  
Hiroshi Hayakawa ◽  
David N. Taylor ◽  
Claudine E. Fasching ◽  
Julie R. Kenner ◽  
...  

Vibrio cholerae induces massive intestinal fluid secretion that continues for the life of the stimulated epithelial cells. Enhanced regional blood flow and peristalsis are required to adapt to this obligatory intestinal secretory challenge. Nitric oxide (NO) is a multifunctional molecule that modulates blood flow and peristalsis and possesses both cytotoxic and antibacterial activity. We demonstrate that, compared with those in asymptomatic control subjects, levels of stable NO metabolites ([Formula: see text]/[Formula: see text]) are significantly increased in sera from acutely ill Peruvian patients with natural cholera infection as well as from symptomatic volunteers from the United States infected experimentally with V. cholerae. In a rabbit ileal loop model in vivo, cholera toxin (CT) elicited fluid secretion and dose-dependent increases in levels of[Formula: see text]/[Formula: see text]in the fluid ( P < 0.01). In contrast, lipopolysaccharide (LPS) elicited no such effects when applied to the intact mucosa. NO synthase (NOS) catalytic activity also increased in toxin-exposed tissues ( P< 0.05), predominantly in epithelial cells. The CT-induced NOS activity was Ca2+dependent and was not suppressed by dexamethasone. In conclusion, symptomatic V. cholerae infection induces NO production in humans. In the related animal model, CT, but not LPS, stimulated significant production of NO in association with increases in local Ca2+-dependent NOS activity in the tissues.


2019 ◽  
Author(s):  
K. Shaw ◽  
L. Bell ◽  
K. Boyd ◽  
D.M. Grijseels ◽  
D. Clarke ◽  
...  

AbstractThe hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer’s disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature could explain its sensitivity to damage during neurological conditions, including Alzheimer’s disease, where the brain’s energy supply is decreased.


1994 ◽  
Vol 103 (12) ◽  
pp. 975-982 ◽  
Author(s):  
Sina Nasri ◽  
Jody Kreiman ◽  
Pouneh Beizai ◽  
Michael C. Graves ◽  
Joel A. Sercarz ◽  
...  

The interarytcnoid (IA) muscle has rarely been studied in the living larynx. In this work, the role of the IA muscle in phonation was studied in three dogs by means of an in vivo phonation model. The isolated action of the IA muscle was studied by sectioning and stimulating its nerve branch. As IA activity increased, subglottic pressure increased significantly until a plateau was reached. In the absence of superior laryngeal nerve stimulation, the fundamental frequency rose with increasing IA activity. In the presence of superior laryngeal nerve stimulation, however, no significant change in fundamental frequency was observed with increasing IA activity. Measurement of adductory force demonstrated that the IA muscle adducts primarily the posterior vocal fold. In this canine model, phonation was not possible without IA stimulation, owing to a large posterior glottic chink.


2014 ◽  
Vol 92 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Jan M. Warnecke ◽  
Thomas Wendt ◽  
Stefan Winkler ◽  
Matthias Schak ◽  
Thorsten Schiffer ◽  
...  

Topical agents like nonivamide and nicoboxil induce hyperaemisation and increase cutaneous blood flow and temperature. This study aimed to determine the effects of a nonivamide–nicoboxil cream on haemodynamics in the skin and calf muscle, via optical spectroscopy, discriminating between the changes for skin and muscle. Optical spectroscopy was applied in the visible (VIS) and near-infrared (NIR) wavelength range. The study determined the effect of the cream on changes in oxygenated (ΔoxyHb) and deoxygenated (ΔdeoxyHb) haemoglobin in skin and muscle, as well as on tissue oxygen saturation (SO2) in the skin of 14 healthy subjects. The left and right calves of the subjects were either treated with nonivamide–nicoboxil cream or were sham-administered. NIR spectroscopy allows noninvasive in-vivo examination of the oxygenation of human skeletal muscle. Topical administration of the nonivamide–nicoboxil cream significantly increased the concentration of oxygenated haemoglobin and tissue oxygen saturation in the skin, as well as the concentration of oxygenated haemoglobin in the muscle of the treated legs after 15 min, but with stronger and faster effects in the skin. The topical application of the nonivamide–nicoboxil cream increased blood flow in (smaller vessels of) the skin and muscle tissues.


1994 ◽  
Vol 103 (10) ◽  
pp. 758-766 ◽  
Author(s):  
Sina Nasri ◽  
Joel A. Sercarz ◽  
Gerald S. Berke

Laryngologists have long recognized that assessment of the mucosal wave is an important part of laryngeal evaluation. This is the first report of a noninvasive measurement of vocal fold displacement velocity in an in vivo canine model. a newly developed calibrating endoscopic instrument capable of measuring distances on the vocal fold surface is described. Displacement velocity was determined in three dogs and compared to physiologic measures in the in vivo phonation model. The results indicate that the calculated displacement velocity is linearly proportional to traveling wave velocity and fundamental frequency. Because traveling wave velocity has been shown to reflect vocal fold stiffness, this method may advance the usefulness of stroboscopy for the study of mucosal wave abnormalities.


Sign in / Sign up

Export Citation Format

Share Document