Operator-based experimental studies on nonlinear vibration control for an aircraft vertical tail with considering low-order modes

2016 ◽  
Vol 38 (12) ◽  
pp. 1421-1433 ◽  
Author(s):  
Yuta Katsurayama ◽  
Mingcong Deng ◽  
Changan Jiang

In this paper, a robust nonlinear control design using an operator-based robust right coprime factorization approach is considered for vibration control on an aircraft vertical tail with piezoelectric elements. First, a model of the aircraft vertical tail is derived to describe vibration response using the operator-based approach, where, to stabilize vibration of the tail, piezoelectric elements are used as actuators and a hysteresis nonlinear property of piezoelectric actuators is considered. Simultaneously, positions of the piezoelectric actuators that are stuck on the plate are arranged by using a finite element method. Then based on the obtained operator-based model, a robust nonlinear feedback control design is given by using robust right coprime factorization for the aircraft vertical tail with considering the effect of hysteresis nonlinearity from piezoelectric actuators. In particular, low-order modes are employed to design the control scheme even though vibration is configured by high-order modes. In other words, robustness is considered, and the desired performance of tracking is discussed. Finally, both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.

Author(s):  
Mohammad Sheikh Sofla ◽  
Seyed Mehdi Rezaei ◽  
Mohammad Zareinejad

This paper presents an adaptive integral sliding mode control scheme for precise trajectory tracking of piezoelectric actuators (PEAs). This control methodology is proposed considering the problems of unknown or uncertain system parameters, hysteresis nonlinearity, and external load disturbances. The hysteretic behavior is represented by Bouc–Wen hysteresis model. It is shown that the nonlinear response of the model due to the hysteresis effect, acts as a bounded disturbance. Then base on this fact an adaptive robust controller is proposed, where an integral sliding surface is utilized to achieve the desired tracking performance. By using the proposed control approach the asymptotical stability in displacement tracking and robustness to the dynamic load disturbance can be provided. Finally, Experimental results are illustrated to verify the efficiency of the proposed method for tracking in various range of frequency and load which are common in practical applications.


2019 ◽  
Vol 42 (7) ◽  
pp. 1375-1387
Author(s):  
Guang Jin ◽  
Mingcong Deng

In this paper, a new nonlinear vibration control scheme using piezoelectric actuator is proposed for a flexible plate with a free vibration and sudden perturbations. First, the effect of hysteresis nonlinearity from the piezoelectric actuator is considered by Prandtl-Ishlinskii (P-I) hysteresis model. Simultaneously, a dynamic model of the flexible plate with piezoelectric actuator is considered. Then, based on the dynamic model of the flexible plate, operator-based controllers are designed to guarantee the robust stability of the nonlinear control system. In addition, for ensuring the desired vibration control performance of the flexible plate with a free vibration and sudden perturbations, operator-based compensation method is given by the proposed design scheme. In the designed compensator, the desired compensation performances of tracking and of perturbations are obtained by increasing the number of designed n-times feedback loops. Finally, both of numerical simulation and experimental result are shown to verify the effectiveness of the proposed design scheme.


2011 ◽  
Vol 34 (7) ◽  
pp. 891-902 ◽  
Author(s):  
Shengjun Wen ◽  
Mingcong Deng ◽  
Shuhui Bi ◽  
Dongyun Wang

In this paper, a robust nonlinear control design method using an operator-based robust right coprime factorization approach and its realization based on a distributed control system (DCS) device are considered for a multi-tank process. In detail, for the multi-tank process, consisting of a water-level process and a water-flow process, theoretical models are developed according to the Bernoulli theorem. Based on the obtained models, a robust nonlinear feedback control design is presented by using robust right coprime factorization for the multi-tank process. Further, from a large-scale industrial application viewpoint, the realization of the designed operator-based robust right coprime factorization controllers is considered by using a DCS device. Because there are some nonlinear functions in the designed controllers which cannot be realized straightforwardly in the DCS device such that the designed controllers need to be realized approximately. That is, there exist some parasitic terms for the approximated realization of the controllers in the real system. As a result, the parasitic terms and processes’ unknown uncertainties should be considered simultaneously. In this paper, a robust condition is derived to guarantee robust stability of the nonlinear feedback control system with the parasitic terms and the uncertainties. Moreover, tracking controller design problem for the multi-tank process is discussed. Finally, by using a DCS device (CENTUM CS3000), experimental results are given to confirm the effectiveness of the proposed design scheme.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Alexandre Molter ◽  
Otávio A. Alves da Silveira ◽  
Jun S. Ono Fonseca ◽  
Valdecir Bottega

This paper presents a control design for flexible manipulators using piezoelectric actuators bonded on nonprismatic links. The dynamic model of the manipulator is obtained in a closed form through the Lagrange equations. Each link is discretized using finite element modal formulation based on Euler-Bernoulli beam theory. The control uses the motor torques and piezoelectric actuators for controlling vibrations. An optimization problem with genetic algorithm (GA) is formulated for the location and size of the piezoelectric actuator and sensor on the links. The natural frequencies and mode shapes are computed by the finite element method, and the irregular beam geometry is approximated by piecewise prismatic elements. The State-Dependent Riccati Equation (SDRE) technique is used to derive a suboptimal controller for a robot control problem. A state-dependent equation is solved at each new point obtained for the variables from the problem, along the trajectory to obtain a nonlinear feedback controller. Numerical tests verify the efficiency of the proposed optimization and control design.


2019 ◽  
Vol 25 (21-22) ◽  
pp. 2784-2798 ◽  
Author(s):  
D Williams ◽  
H Haddad Khodaparast ◽  
S Jiffri ◽  
C Yang

Unwanted vibrations are a common occurrence within structures and systems, and often pose a threat to their integrity or functionality. This research aims to seek a solution to attenuate the vibrations experienced within a link of a system using active vibration control with piezoelectric patches as actuators, whilst avoiding the use of large and expensive equipment which would contravene with the common objective of maintaining the smallest mass possible of the system. Previous research has employed large and expensive equipment as the controller, with sensors often only being able to measure the vibrations of the structure along one axis; this research aims to address these issues. The choice of utilizing the small, lightweight, and low-cost Raspberry Pi 3 combined with petite, mountable sensors and actuators was made based upon the greater practicality that the controller, sensors, and actuators exhibit, allowing for their use in a wide variety of applications. An analytical model of the structure was created based on Euler–Bernoulli beam theory and validated through the modal parameters and the frequency response obtained from a finite element model and experimental data. A controller was then designed and applied to the analytical model to attenuate the vibrations along the link, and then the same design was implemented within the Raspberry Pi 3, and experimental studies were carried out. The introduction and effectiveness of a purposeful time delay within the controller was explored within the experimental and analytical studies, with the intention of counteracting unfavorable results produced by the control system. The results of the experiment proved the control design to be effective for a range of frequencies that included the first natural frequency of the link, and validated the analytical model including the control design.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 105
Author(s):  
Thinh Huynh ◽  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This paper proposes a new method to control the pose of a camera mounted on a two-axis gimbal system for visual servoing applications. In these applications, the camera should be stable while its line-of-sight points at a target located within the camera’s field of view. One of the most challenging aspects of these systems is the coupling in the gimbal kinematics as well as the imaging geometry. Such factors must be considered in the control system design process to achieve better control performances. The novelty of this study is that the couplings in both mechanism’s kinematics and imaging geometry are decoupled simultaneously by a new technique, so popular control methods can be easily implemented, and good tracking performances are obtained. The proposed control configuration includes a calculation of the gimbal’s desired motion taking into account the coupling influence, and a control law derived by the backstepping procedure. Simulation and experimental studies were conducted, and their results validate the efficiency of the proposed control system. Moreover, comparison studies are conducted between the proposed control scheme, the image-based pointing control, and the decoupled control. This proves the superiority of the proposed approach that requires fewer measurements and results in smoother transient responses.


Sign in / Sign up

Export Citation Format

Share Document