High order robust fast finite time containment control for multi-agent systems

2019 ◽  
Vol 42 (3) ◽  
pp. 528-542 ◽  
Author(s):  
Ali Fattahi ◽  
Maryam Zekri ◽  
Mohammad Danesh

This paper studies the problem of robust containment with trivial sensitivity to both initial conditions and communication topology for multi-agent systems. In this way, based on the homogeneity property of the dynamic systems, a new nonlinear high order sliding surface for containment problem is proposed. This sliding surface has a fast finite time dynamics which causes remarkably reduction of containment sensitivity to the multi-agent initial conditions and communication topology. Accordingly, a high order fast finite time containment control (HOFFT-CC) protocol is established and the containment of multiple agents to a convex hull is realized. The proposed framework solves the fast containment problem for high order dynamics that are subjected to the external disturbance and furthermore, for both directed and undirected graph topology. Moreover, because of decoupling the agents’ dynamics and converting the multi-agent problem to some single agent problems, the structure of the proposed method is simpler and more straightforward in comparison with previous works. The finite time stability of the closed loop multi-agent systems based on the homogeneity theory and Lyapunov theorem, is analyzed and proved. The proof is produced throughout the negative degree homogeneity property of the closed loop dynamics along with asymptotical stability. In addition, simulation for a general third order multi-agent system in a two-dimensional space is accomplished and the results demonstrate the trivial sensitivity of containment to both initial conditions and communication topology.

Author(s):  
Malika Sader ◽  
Fuyong Wang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

This paper studies the containment control problem for a class of nonlinear multi-agent systems (MASs) with actuator faults (AFs) and external disturbance under switching communication topologies. To address this problem, a new fuzzy fault-tolerant containment control method is developed via utilizing adaptive mechanisms. Furthermore, a sufficient condition is obtained to guarantee the stability of the considered closed-loop system by the dwell time technique combined with Lyapunov stability theory. Unlike the traditional method to estimate the weight matrix, the fuzzy logic system is used to estimate the norm of weight vectors. Thus, the difficulty that the unknown nonlinear function cannot be compensated for when the actuator produces outage or stuck fault is solved. Compared with the existing controllers for nonlinear MASs, the proposed controller is more suitable for the considered problem under the influence of AFs that are detrimental to the operation of each agent system. Besides which, the closed-loop system is proven to be stable by using the developed controller, and all followers converge asymptotically to the convex hull formed by the leaders. Finally, an example based on a reduced-order aircraft model is presented to verify the effectiveness of the designed control scheme.


2020 ◽  
Vol 512 ◽  
pp. 338-351 ◽  
Author(s):  
Hui Lü ◽  
Wangli He ◽  
Qing-Long Han ◽  
Xiaohua Ge ◽  
Chen Peng

2020 ◽  
Vol 42 (16) ◽  
pp. 3254-3266
Author(s):  
Yanhui Yin ◽  
Fuyong Wang ◽  
Zhongxin Liu ◽  
Zengqiang Chen

This paper is concerned with the consensus tracking problem in nonlinear multi-agent systems against external disturbances and multiple actuator faults. The nonlinear dynamics are unknown and the leader’s input is unavailable to any follower. By using finite-time Lyapunov stability theory, a distributed discontinuous protocol is developed. On this basis, a fixed-time control protocol is further designed to obtain a settling time regardless of initial conditions. In addition, the practical finite-time consensus and practical fixed-time consensus are investigated by the adaptive technique, under which the bounds of the faults can be estimated online adaptively. The innovation of this work lies in the fact that the finite/fixed-time consensus problem is solved when multiple faults and mismatched nonlinearity are simultaneously considered. The relationship between the settling time and design parameters is well established. Finally, some numerical simulations are given to verify the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document