A guided latent Dirichlet allocation approach to investigate real-time latent topics of Twitter data during Hurricane Laura

2021 ◽  
pp. 016555152110077
Author(s):  
Sulong Zhou ◽  
Pengyu Kan ◽  
Qunying Huang ◽  
Janet Silbernagel

Natural disasters cause significant damage, casualties and economical losses. Twitter has been used to support prompt disaster response and management because people tend to communicate and spread information on public social media platforms during disaster events. To retrieve real-time situational awareness (SA) information from tweets, the most effective way to mine text is using natural language processing (NLP). Among the advanced NLP models, the supervised approach can classify tweets into different categories to gain insight and leverage useful SA information from social media data. However, high-performing supervised models require domain knowledge to specify categories and involve costly labelling tasks. This research proposes a guided latent Dirichlet allocation (LDA) workflow to investigate temporal latent topics from tweets during a recent disaster event, the 2020 Hurricane Laura. With integration of prior knowledge, a coherence model, LDA topics visualisation and validation from official reports, our guided approach reveals that most tweets contain several latent topics during the 10-day period of Hurricane Laura. This result indicates that state-of-the-art supervised models have not fully utilised tweet information because they only assign each tweet a single label. In contrast, our model can not only identify emerging topics during different disaster events but also provides multilabel references to the classification schema. In addition, our results can help to quickly identify and extract SA information to responders, stakeholders and the general public so that they can adopt timely responsive strategies and wisely allocate resource during Hurricane events.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-20
Author(s):  
Yunyan Guo ◽  
Jianzhong Li

Latent Dirichlet Allocation (LDA) has been widely used for topic modeling, with applications spanning various areas such as natural language processing and information retrieval. While LDA on small and static datasets has been extensively studied, several real-world challenges are posed in practical scenarios where datasets are often huge and are gathered in a streaming fashion. As the state-of-the-art LDA algorithm on streams, Streaming Variational Bayes (SVB) introduced Bayesian updating to provide a streaming procedure. However, the utility of SVB is limited in applications since it ignored three challenges of processing real-world streams: topic evolution , data turbulence , and real-time inference . In this article, we propose a novel distributed LDA algorithm—referred to as StreamFed-LDA— to deal with challenges on streams. For topic modeling of streaming data, the ability to capture evolving topics is essential for practical online inference. To achieve this goal, StreamFed-LDA is based on a specialized framework that supports lifelong (continual) learning of evolving topics. On the other hand, data turbulence is commonly present in streams due to real-life events. In that case, the design of StreamFed-LDA allows the model to learn new characteristics from the most recent data while maintaining the historical information. On massive streaming data, it is difficult and crucial to provide real-time inference results. To increase the throughput and reduce the latency, StreamFed-LDA introduces additional techniques that substantially reduce both computation and communication costs in distributed systems. Experiments on four real-world datasets show that the proposed framework achieves significantly better performance of online inference compared with the baselines. At the same time, StreamFed-LDA also reduces the latency by orders of magnitudes in real-world datasets.


2021 ◽  
Author(s):  
Samuel Duraivel ◽  
Lavanya R

Abstract This research paper explores the underlying factors that contribute toward vaccine hesitancy, resistance, and refusal. Using Latent Dirichlet Allocation (LDA), an unsupervised generative-probabilistic model, we generated latent topics from user generated Reddit corpora on reasons for Vaccine hesitancy. Although we hoped to explore the grounds for vaccine hesitancy across the globe, our findings suggest that the corpus used for analysis had been generated by users living predominantly in the United States.Observation of the topics generated by the LDA model led to the discovery of the following latent factors: (i) fear of risks and side effects, (ii) lack of trust in policymakers, (iii) related to religious belief, (iv) related to mass surveillance theories, (v) perception of vaccination as a precedence to totalitarianism, (vi) racial background pertaining to retrospective events of racial injustice, such as selective sterilization, (vii) depopulation agenda fueled by theories affiliated to Global warming and extinction rebellion, (viii) and perception of vaccination as a campaign to quell immigrant population growth, fueled by reports of coerced sterilization of immigrants in the ICE detention.


2021 ◽  
Vol 297 ◽  
pp. 01071
Author(s):  
Sifi Fatima-Zahrae ◽  
Sabbar Wafae ◽  
El Mzabi Amal

Sentiment classification is one of the hottest research areas among the Natural Language Processing (NLP) topics. While it aims to detect sentiment polarity and classification of the given opinion, requires a large number of aspect extractions. However, extracting aspect takes human effort and long time. To reduce this, Latent Dirichlet Allocation (LDA) method have come out recently to deal with this issue.In this paper, an efficient preprocessing method for sentiment classification is presented and will be used for analyzing user’s comments on Twitter social network. For this purpose, different text preprocessing techniques have been used on the dataset to achieve an acceptable standard text. Latent Dirichlet Allocation has been applied on the obtained data after this fast and accurate preprocessing phase. The implementation of different sentiment analysis methods and the results of these implementations have been compared and evaluated. The experimental results show that the combined uses of the preprocessing method of this paper and Latent Dirichlet Allocation have an acceptable results compared to other basic methods.


2019 ◽  
Author(s):  
Νεκταρία Πόθα

Η περιοχή της ανάλυσης συγγραφέα (Authorship Analysis) αποσκοπεί στην άντληση πληροφοριών σχετικά με τους συγγραφείς ψηφιακών κειμένων. Συνδέεται άμεσα με πολλές εφαρμογές καθώς είναι εφικτό να χρησιμοποιηθεί για την ανάλυση οποιουδήποτε είδους(genre) κειμένων: λογοτεχνικών έργων, άρθρων εφημερίδων, αναρτήσεις σε κοινωνικά δίκτυα κλπ. Οι περιοχές εφαρμογών της τεχνολογίας αυτής διακρίνονται σε φιλολογικές (humanities),(π.χ. ποιος είναι ο συγγραφέας ενός λογοτεχνικού έργου που εκδόθηκε ανώνυμα, ποιος είναι ο συγγραφέας έργων που έχουν εκδοθεί με ψευδώνυμο, επαλήθευση της πατρότητας λογοτεχνικών έργων γνωστών συγγραφέων κτλ.), εγκληματολογικές (forensics) (π.χ. εύρεση υφολογικών ομοιοτήτων μεταξύ προκηρύξεων τρομοκρατικών ομάδων, διερεύνηση αυθεντικότητας σημειώματος αυτοκτονίας, αποκάλυψη πολλαπλών λογαριασμών χρήστη σε κοινωνικά δίκτυα που αντιστοιχούν στο ίδιο άτομο κτλ.) και στον τομέα της ασφάλειας του κυβερνοχώρου (cyber-security) (π.χ. εύρεση υφολογικών ομοιοτήτων μεταξύ χρηστών πολλαπλών ψευδωνύμων).Θεμελιώδες ερευνητικό πεδίο της ανάλυσης συγγραφέα αποτελεί η επαλήθευση συγγραφέα (author verification), όπου δεδομένου ενός συνόλου κειμένων (σε ηλεκτρονική μορφή) από τον ίδιο συγγραφέα (υποψήφιος συγγραφέας) καλούμαστε να αποφασίσουμε αν ένα άλλο κείμενο (άγνωστης ή αμφισβητούμενης συγγραφικής προέλευσης) έχει γραφτεί από τον συγγραφέα αυτόν ή όχι. Η επαλήθευση συγγραφέα έχει αποκτήσει ιδιαίτερο ενδιαφέρον τα τελευταία χρόνια κυρίως λόγω των πειραματικών αξιολογήσεων PAN@CLEF. Συγκεκριμένα, από το 2013 εως το 2015 οι διαγωνισμοί PAN είχαν εστιάσει στο πεδίο της επαλήθευσης συγγραφέα παρέχοντας ένα καλά οργανωμένο σύνολο δεδομένων (PAN corpora) και συγκεντρώνοντας πλήθος μεθόδων για τον σκοπό αυτό. Ωστόσο, το περιθώριο λάθους είναι αρκετά μεγάλο εφόσον η επίδοση των μεθόδων εξαρτάται από πολλαπλούς παράγοντες όπως το μήκος των κειμένων, η θεματική συνάφεια μεταξύ των κειμένων και η υφολογική συνάφεια μεταξύ των κειμένων. Η πιο απαιτητική περίπτωση προκύπτει όταν τα κείμενα γνωστού συγγραφέα ανήκουν σε ένα είδος (π.χ. blogs ή μηνύματα email) ενώ το προς διερεύνηση κείμενο ανήκει σε άλλο είδος (π.χ., tweet ή άρθρο εφημερίδας). Επιπλέον, αν τα κείμενα του γνωστού συγγραφέα με το προς διερεύνηση κείμενο δεν συμφωνούν ως προς τη θεματική περιοχή (topic) (π.χ. τα γνωστά κείμενα σχετίζονται με εξωτερική πολιτική και το άγνωστο με πολιτιστικά θέματα) η επίδοση των τρεχόντων μεθόδων επαλήθευσης συγγραφέα είναι ιδιαίτερα χαμηλή. Στόχος της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη αποδοτικών και εύρωστων μεθόδων επαλήθευσης συγγραφέα που είναι ικανές να χειριστούν ακόμα και τέτοιες περίπλοκες περιπτώσεις. Προς την κατεύθυνση αυτή, παρουσιάζουμε βελτιωμένες μεθόδους επαλήθευσης συγγραφέα και συστηματικά εξετάζουμε την αποδοτικότητα τους σε διάφορα σύνολα δεδομένων αναφοράς (PAN datasets και Enron Data). Αρχικά, προτείνουμε δύο βελτιωμένους αλγόριθμους, ο ένας ακολουθεί το παράδειγμα όπου όλα τα διαθέσιμα δείγματα γραφής του υποψηφίου συγγραφέα αντιμετωπίζονται μεμονωμένα, ως ξεχωριστές αναπαραστάσεις (instance-based paradigm) και ο άλλος είναι βασισμένος στο παράδειγμα όπου όλα τα δείγματα γραφής του υποψηφίου συγγραφέα συννενώνονται και εξάγεται ένα ενιαίο κείμενο, μία μοναδική αναπαράσταση (profile-based paradigm), οι οποίες επιτυγχανουν υψηλότερη απόδοση σε σύνολα δεδομένων που καλύπτουν ποικιλία γλωσσώνν (Αγγλικά, Ελληνικά, Ισπανικά, Ολλανδικά) και κειμενικών ειδών (άρθρα, κριτικές, νουβέλες, κ.ά.) σε σύγκριση με την τεχνολογία αιχμής (state-of-the-art) στον τομέα της επαλήθευσης. Είναι σημαντικό να τονίσουμε ότι οι προτεινόμενες μέθοδοι επωφελούνται σημαντικά από τη διαθεσιμότητα πολλαπλών δειγμάτων κειμένων του υποψηφίου συγγραφέα και παραμένουν ιδιαίτερα ανθεκτικές/ανταγωνιστικές όταν το μήκος των κειμένων είναι περιορισμένο. Επιπλέον, διερευνούμε τη χρησιμότητα της εφαρμογής μοντελοποίησης θέματος (topic modeling) στην επαλήθευση συγγραφέα. Συγκεκριμένα, διεξάγουμε μια συστηματική μελέτη για να εξετάσουμε εάν οι τεχνικές μοντελοποίησης θέματος επιτυγχάνουν την βελτίωση της απόδοσης των πιο βασικών κατηγοριών μεθόδων επαλήθευσης καθώς και ποια συγκεκριμένη τεχνική μοντελοποίησης θέματος είναι η πλέον κατάλληλη για κάθε ένα από τα παραδείγματα μεθόδων επαλήθευσης. Για το σκοπό αυτό, συνδυάζουμε γνωστές μεθόδους μοντελοποίσης, Latent Semantic Indexing (LSI) και Latent Dirichlet Allocation, (LDA), με διάφορες μεθόδους επαλήθευσης συγγραφέα, οι οποίες καλύπτουν τις βασικές κατηγορίες στην περιοχή αυτή, δηλαδή την ενδογενή(intrinsic), που αντιμετωπίζει το πρόβλημα επαλήθευσης ως πρόβλημα μίας κλάσης, και την εξωγενή (extrinsic), που μετατρέπει το πρόβλημα επαλήθευσης σε πρόβλημα δύο κλάσεων, σε συνδυασμό με τις profile-based και instance-based προσεγγίσεις.Χρησιμοποιώντας πολλαπλά σύνολα δεδομένων αξιολόγησης επιδεικνύουμε ότι η LDA τεχνική συνδυάζεται καλύτερα με τις εξωγενείς μεθόδους ενώ η τεχνική LSI αποδίδει καλύτερα με την πιο αποδοτικής ενδογενή μέθοδο. Επιπλέον, οι τεχνικές μοντελοποίησης θέματος φαίνεται να είναι πιο αποτελεσματικές όταν εφαρμόζονται σε μεθόδους που ακολουθούν το profile-based παράδειγμα και η αποδοτικότητα τους ενισχύεται όταν η πληροφορία των latent topics εξάγεται από ένα ενισχυμένο σύνολο κειμένων (εμπλουτισμένο με επιπλέον κείμενα τα οποία έχουν συλλεχθεί από εξωτερικές πηγές (π.χ web) και παρουσιάζουν σημαντική θεματική συνάφεια με το αρχικό υπό εξέταση σύνολο δεδομένων. Η σύγκριση των αποτελεσμάτων μας με την τεχνολογία αιχμής του τομέα της επαλήθευσης, επιδεικνύει την δυναμική των προτεινόμενων μεθόδων. Επίσης, οι προτεινόμενες εξωγενείς μέθοδοι είναι ιδιαίτερα ανταγωνιστικές στην περίπτωση που χρησιμοποιηθούν αγνώστου είδους εξωγενή κείμενα. Σε ορισμένες από τις σχετικές μελέτες, υπάρχουν ενδείξεις ότι ετερογενή σύνολα(heterogeneous ensembles) μεθόδων επαλήθευσης μπορούν να παρέχουν πολύ αξιόπιστες λύσεις, καλύτερες από κάθε ατομικό μοντέλο επαλήθευσης ξεχωριστά. Ωστόσο, έχουν εξεταστεί μόνο πολύ απλά μοντέλα συνόλων έως τώρα που συνδυάζουν σχετικά λίγες βασικές μεθόδους. Προσπαθώντας να καλύψουμε το κενό αυτό, θεωρούμε ένα μεγάλο σύνολο βασικών μοντέλων επαλήθευσης (συνολικά 47 μοντέλα) που καλύπτουν τα κύρια παραδείγματα /κατηγορίες μεθόδων στην περιοχή αυτή και μελετούμε τον τρόπο με τον οποίο μπορούν να συνδυαστούν ώστε να δημιουργηθεί ένα αποτελεσματικό σύνολο. Με αυτό τον τρόπο, προτείνουμε ένα απλό σύνολο ομαδοποίησης στοίβας (stacking ensemble) καθώς και μια προσέγγιση που βασίζεται στην δυναμική επιλογή μοντέλων για καθεμία υπό εξέταση περίπτωση επαλήθευσης συγγραφέα ξεχωριστά. Τα πειραματικά αποτελέσματα σε πολλαπλά σύνολα δεδομένων επιβεβαιώνουν την καταλληλότητα των προτεινόμενων μεθόδων επιδεικνύοντας την αποτελεσματικότητα τους. Η βελτίωση της επίδοσης που επιτυγχάνουν τα καλύτερα από τα αναφερόμενα μοντέλα σε σχέση με την τρέχουσα τεχνολογία αιχμής είναι περισσότερο από 10%.


2019 ◽  
Vol 9 (4) ◽  
pp. 1-20 ◽  
Author(s):  
Nicola Burns ◽  
Yaxin Bi ◽  
Hui Wang ◽  
Terry Anderson

There is a need to automatically classify information from online reviews. Customers want to know useful information about different aspects of a product or service and also the sentiment expressed towards each aspect. This article proposes an Enhanced Twofold-LDA model (Latent Dirichlet Allocation), in which one LDA is used for aspect assignment and another is used for sentiment classification, aiming to automatically determine aspect and sentiment. The enhanced model incorporates domain knowledge (i.e., seed words) to produce more focused topics and has the ability to handle two aspects in at the sentence level simultaneously. The experiment results show that the Enhanced Twofold-LDA model is able to produce topics more related to aspects in comparison to the state of arts method ASUM (Aspect and Sentiment Unification Model), whereas comparable with ASUM on sentiment classification performance.


2019 ◽  
Author(s):  
Abhisek Chowdhury

Social media feeds are rapidly emerging as a novel avenue for the contribution and dissemination of geographic information. Among which Twitter, a popular micro-blogging service, has recently gained tremendous attention for its real-time nature. For instance, during floods, people usually tweet which enable detection of flood events by observing the twitter feeds promptly. In this paper, we propose a framework to investigate the real-time interplay between catastrophic event and peo-ples’ reaction such as flood and tweets to identify disaster zones. We have demonstrated our approach using the tweets following a flood in the state of Bihar in India during year 2017 as a case study. We construct a classifier for semantic analysis of the tweets in order to classify them into flood and non-flood categories. Subsequently, we apply natural language processing methods to extract information on flood affected areas and use elevation maps to identify potential disaster zones.


2021 ◽  
Vol 13 (19) ◽  
pp. 10856
Author(s):  
I-Cheng Chang ◽  
Tai-Kuei Yu ◽  
Yu-Jie Chang ◽  
Tai-Yi Yu

Facing the big data wave, this study applied artificial intelligence to cite knowledge and find a feasible process to play a crucial role in supplying innovative value in environmental education. Intelligence agents of artificial intelligence and natural language processing (NLP) are two key areas leading the trend in artificial intelligence; this research adopted NLP to analyze the research topics of environmental education research journals in the Web of Science (WoS) database during 2011–2020 and interpret the categories and characteristics of abstracts for environmental education papers. The corpus data were selected from abstracts and keywords of research journal papers, which were analyzed with text mining, cluster analysis, latent Dirichlet allocation (LDA), and co-word analysis methods. The decisions regarding the classification of feature words were determined and reviewed by domain experts, and the associated TF-IDF weights were calculated for the following cluster analysis, which involved a combination of hierarchical clustering and K-means analysis. The hierarchical clustering and LDA decided the number of required categories as seven, and the K-means cluster analysis classified the overall documents into seven categories. This study utilized co-word analysis to check the suitability of the K-means classification, analyzed the terms with high TF-IDF wights for distinct K-means groups, and examined the terms for different topics with the LDA technique. A comparison of the results demonstrated that most categories that were recognized with K-means and LDA methods were the same and shared similar words; however, two categories had slight differences. The involvement of field experts assisted with the consistency and correctness of the classified topics and documents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243208
Author(s):  
Leacky Muchene ◽  
Wende Safari

Unsupervised statistical analysis of unstructured data has gained wide acceptance especially in natural language processing and text mining domains. Topic modelling with Latent Dirichlet Allocation is one such statistical tool that has been successfully applied to synthesize collections of legal, biomedical documents and journalistic topics. We applied a novel two-stage topic modelling approach and illustrated the methodology with data from a collection of published abstracts from the University of Nairobi, Kenya. In the first stage, topic modelling with Latent Dirichlet Allocation was applied to derive the per-document topic probabilities. To more succinctly present the topics, in the second stage, hierarchical clustering with Hellinger distance was applied to derive the final clusters of topics. The analysis showed that dominant research themes in the university include: HIV and malaria research, research on agricultural and veterinary services as well as cross-cutting themes in humanities and social sciences. Further, the use of hierarchical clustering in the second stage reduces the discovered latent topics to clusters of homogeneous topics.


Sign in / Sign up

Export Citation Format

Share Document