An Integrated Decision-tree Testing Strategy for Eye Irritation with Respect to the Requirements of the EU REACH Legislation

2008 ◽  
Vol 36 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

This paper presents some results of a joint research project, sponsored by Defra and conducted by FRAME and Liverpool John Moores University, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for eye irritation testing. The manuscript reviews numerous in vitro tests and their possible collation into test batteries, in silico models and a refined in vivo method (the low volume eye test), before combining the use of all these methods into an integrated testing strategy. The aim of this strategy is a reduction in the number of animal tests which would need to be performed in the process of fulfilling the REACH system criteria; this would also lead to a lowering of the number of animals required in compliance with the REACH system requirements.

2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 111-122 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

This paper presents some results of a joint research project, sponsored by Defra and conducted by FRAME and Liverpool John Moores University, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for eye irritation testing. The manuscript reviews numerous in vitro tests and their possible collation into test batteries, in silico models and a refined in vivo method (the low volume eye test), before combining the use of all these methods into an integrated testing strategy. The aim of this strategy is a reduction in the number of animal tests which would need to be performed in the process of fulfilling the REACH system criteria; this would also lead to a lowering of the number of animals required in compliance with the REACH system requirements.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 75-89 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

This report presents some of the results of a joint research project, sponsored by Defra and conducted by FRAME and Liverpool John Moores University, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity end-points associated with the REACH system. This report focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for skin sensitisation testing. The manuscript reviews in vitro tests based on protein-ligand binding, dendritic/Langerhans cells and T-lymphocyte activation, and also the QSAR models and expert systems available for this endpoint. These tests are then incorporated into an integrated, decision-tree testing strategy, which also includes the Local Lymph Node Assay (in its original and new reduced protocols) and the traditional guinea-pig tests (which should only be used as a last resort). The aim of the strategy is to minimise the use of animals in testing for skin sensitisation, while satisfying the scientific and logistical demands of the EU REACH legislation.


2008 ◽  
Vol 36 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

This paper presents some results of a joint research project conducted by FRAME and Liverpool John Moores University, and sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity end-points associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for repeat dose (sub-acute, sub-chronic and chronic) toxicity testing. It reviews the limited number of in silico and in vitro tests available for this endpoint, and outlines new technologies which could be used in the future, e.g. the use of biomarkers and the ‘omics’ technologies. An integrated testing strategy is proposed, which makes use of as much non-animal data as possible, before any essential in vivo studies are performed. Although none of the non-animal tests are currently undergoing validation, their results could help to reduce the number of animals required for testing for repeat dose toxicity.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 139-147 ◽  
Author(s):  
Christina Grindon ◽  
Robert Combes ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

This paper presents some results of a joint research project conducted by FRAME and Liverpool John Moores University, and sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity end-points associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for repeat dose (sub-acute, sub-chronic and chronic) toxicity testing. It reviews the limited number of in silico and in vitro tests available for this endpoint, and outlines new technologies which could be used in the future, e.g. the use of biomarkers and the ‘omics’ technologies. An integrated testing strategy is proposed, which makes use of as much non-animal data as possible, before any essential in vivo studies are performed. Although none of the non-animal tests are currently undergoing validation, their results could help to reduce the number of animals required for testing for repeat dose toxicity.


2008 ◽  
Vol 36 (1_suppl) ◽  
pp. 91-109 ◽  
Author(s):  
Robert Combes ◽  
Christina Grindon ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.


2008 ◽  
Vol 36 (1) ◽  
pp. 45-63 ◽  
Author(s):  
Robert Combes ◽  
Christina Grindon ◽  
Mark T.D. Cronin ◽  
David W. Roberts ◽  
John F. Garrod

Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.


1993 ◽  
Vol 9 (6) ◽  
pp. 1017-1025 ◽  
Author(s):  
Ih Chu ◽  
Peter Toft

The rabbit eye irritation test based on the Draize method is required for the hazard assessment of chemicals and products that may come into contact with the eye. Due to the potential for the suffering of animals and subjectivity of the test, many modifications of the method have been made that involved a reduction in the number of animals and a refinement of techniques. Additionally, there has been significant development of in vitro alternatives. This paper reviews recent advances in the in vivo test and in vitro alternatives, as well as regulatory requirements. While the refinement of in vivo protocols has resulted in a reduction in the number and discomfort on animals, the development of in vitro alternatives could lead to an eventual replacement of animal studies. In view of the inherent simplicity of many in vitro methods, some of which comprise cell cultures, further research into the relevance/mechanism of effects is required. Batteries of in vitro tests, when properly validated, may be considered as replacements for animal testing.


Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 45
Author(s):  
Eleonore Fröhlich

Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.


2020 ◽  
Vol 21 (8) ◽  
pp. 2988 ◽  
Author(s):  
Karine Audouze ◽  
Denis Sarigiannis ◽  
Paloma Alonso-Magdalena ◽  
Celine Brochot ◽  
Maribel Casas ◽  
...  

Exposure to chemical substances that can produce endocrine disrupting effects represents one of the most critical public health threats nowadays. In line with the regulatory framework implemented within the European Union (EU) to reduce the levels of endocrine disruptors (EDs) for consumers, new and effective methods for ED testing are needed. The OBERON project will build an integrated testing strategy (ITS) to detect ED-related metabolic disorders by developing, improving and validating a battery of test systems. It will be based on the concept of an integrated approach for testing and assessment (IATA). OBERON will combine (1) experimental methods (in vitro, e.g., using 2D and 3D human-derived cells and tissues, and in vivo, i.e., using zebrafish at different stages), (2) high throughput omics technologies, (3) epidemiology and human biomonitoring studies and (4) advanced computational models (in silico and systems biology) on functional endpoints related to metabolism. Such interdisciplinary framework will help in deciphering EDs based on a mechanistic understanding of toxicity by providing and making available more effective alternative test methods relevant for human health that are in line with regulatory needs. Data generated in OBERON will also allow the development of novel adverse outcome pathways (AOPs). The assays will be pre-validated in order to select the test systems that will show acceptable performance in terms of relevance for the second step of the validation process, i.e., the inter-laboratory validation as ring tests. Therefore, the aim of the OBERON project is to support the organization for economic co-operation and development (OECD) conceptual framework for testing and assessment of single and/or mixture of EDs by developing specific assays not covered by the current tests, and to propose an IATA for ED-related metabolic disorder detection, which will be submitted to the Joint Research Center (JRC) and OECD community.


1996 ◽  
Vol 24 (5) ◽  
pp. 741-858 ◽  
Author(s):  
Horst Spielmann ◽  
Manfred Liebsch ◽  
Sabine Kalweit ◽  
Ferdinand Moldenhauer ◽  
Tobias Wirnsberger ◽  
...  

During 1988–1992, a validation study was carried out in Germany on the capacity of two in vitro tests to replace the Draize eye test for severely eye irritating chemicals, namely, the hen's egg chorio-allantoic membrane (HET-CAM) test and the 3T3 cell neutral red uptake (NRU) cytotoxicity test, which had shown promising results in an earlier test development project. The formal validation study, which was coordinated by Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments (ZEBET) and funded by the German Department of Research and Technology (BMBF), was conducted in two phases: Phase I consisted of a prevalidation study and a blind trial (1988–1990); and Phase II was the database development phase (1991/1992). During prevalidation, the two in vitro tests were established in 13 laboratories, standard protocols were developed, including PC-based software programs for data recording, and 34 chemicals backed by high quality literature data were selected for the ring trial. In the 1-year ring trial, the two in vitro tests were validated with 34 coded chemicals under blind conditions in 13 laboratories, to evaluate the reproducibility of the two tests within and among laboratories. In the blind trial, the 3T3 NRU cytotoxicity test showed a better reproducibility than the HET-CAM test, but compared to the cytotoxicity test, the HET-CAM test permitted a significantly better classification of severely eye irritating chemicals, which are labelled R41 according to EU regulations. Since it was recommended in 1990 by the first Amden validation workshop that a database of around 200 chemicals is required for the assessment of test performance to reach regulatory acceptance at the international level, a 2-year database development was conducted as Phase II, during which 166 coded chemicals were tested in the two in vitro tests, each of them in two laboratories. Test chemicals backed by high-quality Draize eye test data were provided by industry and selected to represent a wide spectrum of chemical classes and eye irritation properties. Independent quality control of in vitro and in vivo data and biostatistical evaluation were performed during an additional BMBF project on biostatistics. In the quality assurance step, which is an essential prerequisite for biostatistics, the number of chemicals was reduced to 143, and these data were entered into an MS-EXCEL database to facilitate determination of in vitro/in vivo correlations. Unexpectedly, the evaluation of the study had to take into account a change of criteria within the EU for classifying severely eye irritating chemicals as R41, since irreversible damage within a 21-day observation period was introduced as a new criterion for R41 chemicals. The results of the 3T3 NRU cytotoxicity test showed an insufficient in vitro/in vivo correlation for classifying R41 chemicals. Classification of HET-CAM data was also insufficient in the Bundesgesundhütsamt (BGA) scoring system, which uses an empirically developed weighted scoring of the three endpoints, namely, haemorrhage, lysis and coagulation. Discriminant analysis of ten endpoints routinely determined in the HET-CAM test and in the 3T3 NRU cytotoxicity test revealed that the detection time of coagulation, the most severe reaction on the CAM, was significantly better suited to identifying severely eye irritating properties than any other endpoint, and better than the BGA score for the HET-CAM test. For water-soluble chemicals (mean time for detection of coagulation [mtc]10), the detection time for coagulation of a 10% solution had the highest discriminant power, and for less water-soluble chemicals (mtc100), the detection time of coagulation of the undiluted chemical was more appropriate. Discriminant analysis of the combination of mtc10 and mtc100 with other endpoints of the two in vitro tests revealed that classification of water-soluble chemicals is significantly improved by combining mtc10 and lgfg50m (logarithm of IC50 value calculated with the Fit-Graph program), the endpoint of the 3T3 NRU cytotoxicity test. Further analysis of data from Phase I and Phase II of the study demonstrated that chemicals characterised by an mtc10 of < 50 seconds can be labelled R41 without any false positive classifications. By using this cut-off point, around 25% of R41 chemicals can be classified without further testing in vitro or in vivo. Classification was further improved when solubility in water and oil was taken into account. The best classification of water-soluble R41 chemicals (> 10%) was obtained when the mtc10 of the HET-CAM test and the lgfg50m of the 3T3 NRU cytotoxicity test were combined. For chemicals soluble in oil (> 10%) and for insoluble chemicals, the mtc100 provided the best classification. The in vitro classification results were confirmed by cross-validation. These promising results allowed a sequential approach to be developed for classifying severely eye irritating chemicals as R41 according to EU regulations by combining the HET-CAM test and the 3T3 NRU cytotoxicity test results. The present study suggests that severely eye irritating chemicals can be classified as R41 with a sufficiently high level of confidence with the two in vitro tests, since the percentage of false positive and false negative results are kept within an acceptably low range. Thus, the combined use of the HET-CAM test and the 3T3 NRU cytotoxicity test meets the requirements for “well-validated” tests, as defined in the escape clause of OECD Guideline 405 for eye irritation testing.


Sign in / Sign up

Export Citation Format

Share Document