scholarly journals Removal of heavy metal ions from wastewater by capacitive deionization using polypyrrole/chitosan composite electrode

2019 ◽  
Vol 37 (3-4) ◽  
pp. 205-216 ◽  
Author(s):  
Yujie Zhang ◽  
Quanqin Xue ◽  
Fei Li ◽  
Jizhe Dai

A polypyrrole/chitosan composite material was obtained by chemical polymerization. The adsorption performance of a hot-molded polypyrrole/chitosan composite electrode was tested by adsorption/desorption experiments. Scanning electron microscopy and Fourier-transform infrared spectroscopy both showed the deposition of polypyrrole on the chitosan surface. The specific capacitance of the polypyrrole/chitosan composite was determined by cyclic voltammetry in 1.0 M KCl at 0.01 V/s as 102.96 F/g. The adsorption/desorption experiments indicated that the specific adsorption capacity of the composite for Cu2+ was 99.67 mg/g, while the removal performance for other metal ions, such as Ag+, Pb2+, and Cd2+, was good. The results of multicycle adsorption/desorption tests showed that the adsorption rate of the polypyrrole/chitosan composite electrode for Cu2+ was decreased from 56.4 to 51.4% over 10 cycles, demonstrating the stable metal-ion adsorption/desorption behavior of the composite electrode. The obtained performances show that the prepared polypyrrole/chitosan composite material is an ideal electrode material for the removal of heavy metal ions.

2018 ◽  
Vol 42 (11) ◽  
pp. 8864-8873 ◽  
Author(s):  
Leili Esrafili ◽  
Vahid Safarifard ◽  
Elham Tahmasebi ◽  
M. D. Esrafili ◽  
Ali Morsali

We examined adsorption behavior of some MOFs having different functional groups in their pillar structures for adsorption of some heavy metal ions.


RSC Advances ◽  
2016 ◽  
Vol 6 (106) ◽  
pp. 104754-104762 ◽  
Author(s):  
Ming-Tsung Wu ◽  
Yen-Ling Tsai ◽  
Chih-Wei Chiu ◽  
Chih-Chia Cheng

A novel crosslinking modification of β-chitosan and successfully analyzed its fast adsorption characteristics for different heavy metal ions in highly acidic environments.


2019 ◽  
Vol 11 (19) ◽  
pp. 5186 ◽  
Author(s):  
Jing Qian ◽  
Tianjiao Yang ◽  
Weiping Zhang ◽  
Yuchen Lei ◽  
Chengli Zhang ◽  
...  

NH2-Fe2O3 and NH2-Fe2O3/chitosan (NH2-Fe2O3/CS) with excellent physical properties and high adsorption capacities for several heavy metal ions were synthesized using a one-pot hydrothermal method. The materials were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Physicochemical properties were determined by the Fourier transform infrared spectra (FTIR) and nitrogen adsorption analysis (Brunauer–Emmett–Teller (BET) method). The results of the characterization studies show that the material is uniformly dispersed and has good crystallinity and well-defined porous particles. The material is mesoporous, and the particles have a specific surface area of 55.41–233.03 m2·g−1, a total pore volume of 0.24–0.54 cm3·g−1, and a diameter of 3.83–17.56 nm. Additional results demonstrate that NH2-Fe2O3 and NH2-Fe2O3/CS are effective adsorbents for the removal of heavy metal ions from solution. In a ternary system, the order of their selective adsorption was determined to be Pb(II) > Cu(II) > Cd(II), and the adsorption rate of Pb(II) was much higher than that of Cu(II) and Cd (II). The metal ion adsorption capacity of NH2-Fe2O3 and NH2-Fe2O3/CS makes them promising adsorbents for wastewater cleanup.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 685
Author(s):  
Ai-Huei Chiou ◽  
Jun-Luo Wei ◽  
Ssu-Han Chen

A novel surface-enhanced Raman scattering (SERS)-based probe to capture heavy metal ion (Zn2+) by bovine serum albumin (BSA) using Si-nanowire (SiNW) arrays with silver nanoparticles (AgNPs) was developed. A layer with AgNPs was deposited on the SiNW surface by RF magnetron sputtering for enhancement of SERS signals. Using a high-resolution transmission electron microscope (HRTEM), the observation reveals that the AgNP layer with depths of 30–75 nm was successfully deposited on SiNW arrays. The Ag peaks in EDS and XRD spectra of SiNW arrays confirmed the presence of Ag particles on SiNW arrays. The WCA observations showed a high affinity of the Ag–SiNW arrays immobilized with BSA (water contact angle (WCA) = 87.1°) and ZnSO4 (WCA = 8.8°). The results of FTIR analysis illustrate that the conjugate bonds exist between zinc sulfate (ZnSO4) and –OH groups/–NH groups of BSA. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for the capture of heavy metal ions by BSA with a detection of 0.1 μM. BSA and ZnSO4 conjugations, illustrating specific SERS spectra with high sensitivity, which suggests great promise in developing label-free biosensors.


Author(s):  
Farnaz Seyedvakili ◽  
Mohammad Samipoorgiri

A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions. A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases was used as isotherm equation which can even be applied for multi-pollutants scenarios. The developed model is then validated using collected experimental data of heavy metal ions (Pb, Cu, Cd, Zn, and Ni). Comparisons were made for a number of isotherm and kinetic models to examine the performance of the proposed model. The developed model revealed desirable accuracy and superiority over other models in predicting the adsorption behavior and can be used for other systems of concern. The model correlates the adsorption kinetic with an [Formula: see text] value of 0.9391 and desorption kinetic with an [Formula: see text] value of 0.9383. By application of the proposed model to any available adsorption datasets, the individual characteristics of adsorption and desorption can be determined.


2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1973-1973
Author(s):  
Ying Wang ◽  
Daniel J Blackwood

Increasing demand for the limited resource of fresh water for the large urban populations and development of agriculture and industry draws public concern. Removal of heavy metals such as lead, cadmium, chromium and mercury is crucial in environmental improvement of water and industrial wastewater treatment. Great efforts have been made through chemical precipitation, adsorption, ion exchange, filtration and electrochemical treatment. However, a large volume of sludge residue, expensive and complex matrix materials and low efficiency are still problems that need to be improved. Capacitive deionization (CDI) is a promising energy-efficient technology for water desalination, which is easy to handle and environmentally friendly producing no secondary contaminants through the water purifying process [1]. In order to effectively remove ions, the porous electrodes with large surface area, good chemical stability, high electronic conductivity, and hydrophility are key factors in the selection of CDI materials. Highly porous carbon materials represent the typical electrodes to store the ions through surface ion adsorption/desorption, which is generally categorized as electrochemical double layer. By contrast, pseudocapacitors that consist of conducting polymers and transition metals, store more charge through redox reactions. Among the alternative candidates, the natural abundant and environmental benign MnO2 is of particular interest for research, due to its high theoretical specific capacitance and the ability to be use in mild aqueous electrolytes which expand its practical application [2-3]. MnO2 can be fabricated easily and its morphology can be controlled during simple hydrothermal growth processes. Direct growth on carbon cloth, which is an excellent flexible and conductive substrate, could enhance the regeneration and reuse property of MnO2 as an ideal CDI electrode. Porous MnO2@cabon cloth composites were prepared via a facile hydrothermal method (Figure a). The BET result showed that the average pore width is 18.2 nm. To investigate the CDI property of removing the heavy metal ions, one piece of MnO2@CC and one piece of activated carbon@graphite paper were assembled as working and counter electrodes respectively. This work confirmed the potential of using MnO2@CC as a good CDI electrode material for removal of heavy metal ions from water (Figure b). References S. Porada, R. Zhao, A. Wal, V. Presser, and P. M. Biesheuvel, Prog. Mater. Sci., 58, 1388 (2013). W. Wei, X. Cui, W. Chen, and D. G. Ivey, Chem. Soc. Rev., 40, 1697 (2011). J. Wang, F. Kang, and B. Wei, Prog. Mater. Sci., 74, 51 (2015). Figure 1


Sign in / Sign up

Export Citation Format

Share Document