scholarly journals Application of Activated Carbon for the Sorption of Some Heavy Metals from Aqueous Solution and Their Determination by Atomic Spectroscopy

1996 ◽  
Vol 14 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. Gierak

This paper presents investigations on the possible application of Polish active carbons, obtained by the carbonization of plum stones, in the sorption and preconcentration of selected heavy metal ions, i.e. FeIII, PbII, NiII, ZnII, CoII and CdII, from aqueous solution. The effect of modifying the active carbon surface with oxidizing (HNO3, H2O, air and steam) and reducing (H2) agents on the sorption and ion-exchange capacity of the carbon was examined. The basic characteristics of the porous structure of the tested adsorbents, as well as their ion-exchange capacities towards cations and anions, were determined. In addition, the sorption isotherms of individual ions in the concentration range 10−4–10−2 mol/1, as well as the effect of the pH of the solution on the sorption of the ions, were investigated. As far as the utilization of the prepared sorbents to isolate and preconcentrate trace amounts of tested ions is concerned, the best results were obtained for active carbons thermally treated at 800°C in a hydrogen atmosphere.

2011 ◽  
Vol 11 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Siti Sulastri ◽  
Nuryono Nuryono ◽  
Indriana Kartini ◽  
Eko Sri Kunarti

In this research, adsorption of Ca(II), Pb(II) and Ag(I) in aqueous solution onto sulfonato-silica hybrid (SSH) prepared from rice hull ash (RHA) has been studied. The preparation of SSH adsorbent was carried out by oxidation of mercapto-silica hybrid (MSH) with hydrogen peroxide (H2O2) solution 33%. MSH was prepared, via sol-gel process, by adding 3 M hydrochloric acid solution to mixture of sodium silicate (Na2SiO3) solution and 3(trimethoxysilyl)-1-propanthiol (MPTS) to reach pH of 7.0. Solution of Na2SiO3 was generated from destruction of RHA with sodium hydroxide solution followed with heating at 500 °C for 30 min. The SSH produced was characterized with Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyzer, energy dispersive X-ray (EDX) spectroscopy and determination of ion-exchange capacity for sodium ion (Na+). The adsorption of Ag(I) and Ca(II) were conducted in a batch system in various concentrations for one hour. The adsorbent ion was calculated based on difference of concentrations before and after adsorption process determined using atomic absorbance spectrophotometric (AAS) method. The adsorption character was evaluated using model of isotherm Langmuir and Freundlich adsorption to calculate the capacity, constants and energy of adsorption. Result of characterization by EDX and FTIR showed qualitatively that SSH has been successfully synthesized which were indicated by appearance of characteristic absorbance of functional group namely silanol (Si-OH), siloxane (Si-O-Si), methylene (-CH2-) and disappearance of mercapto group (SH). The XRD data showed amorphous structure of SSH, similar to silica gel (SG) and MSH. The study of adsorption thermodynamics showed that oxidation of MSH into SSH increases the ion-exchange capacity for Na+ from 0.123 to 0.575 mmol/g. The change in functional group from silanol to mercapto and from mercapto to sulfonato increases the adsorption capacity of Ca(II). However, the capacity order of adsorbents for both ions of Pb(II) and Ag(I) in aqueous solution is MSH > SG > SSH.


2018 ◽  
Vol 55 (4C) ◽  
pp. 245
Author(s):  
Pham Thi Hai Thinh

Ion exchange capacity of oxidized activated carbon (OAC) by HNO3 and surface treatment by NaOH solution was investigated. The HNO3oxidizedfunctional groups on the activated carbon surface, such as ketone, carboxylic acid and its derivatives, to maximum oxidation state. The OAC surface played the role as cation exchanger for adsorption of inorganic compounds, especially metallic cations. The adsorption capacity of OAC was investigated in batch mode with three representative ions with different valence from +1 to +3 (NH4+, Ca2+, Cr3+). The adsorption process was demonstrated by Langmuir and Freundlich isothermal model, and the maximum adsorption capacity according to Langmuir isothrermal equation was 20.4 mg/g for NH4+, 43.5 mg/g for Ca2+ and 38.5 mg/g for Cr3+. The results showed the OAC modified by HNO3 and surface treatment by NaOH solution improved adsorption capacity of AC for cations in solution to a higher level. 


2012 ◽  
Vol 528 ◽  
pp. 126-129
Author(s):  
Jin He Jiang

Spinel-type metal compound [LiMnTi0.25O3], was prepared by a solid state reaction crystallization method. LiMnTi0.25O3 can be used to separate Li+ in the aqueous solution. The results showed that the Li+ extraction/insertion be progressed mainly by an ion-exchange mechanism. The acid treated samples had an ion exchange capacity of 4.0mmol/g for Li+


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


2012 ◽  
Vol 511 ◽  
pp. 105-108
Author(s):  
Jin He Jiang

Mg1.5Mn0.5Ti0.75O4 was prepared by a coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material was investigation by X-ray, saturation capacity of exchange, and Kd measurement. The acid treatments of Mg1.5Mn0.5Ti0.75O4 caused Mg2+ extractions of more than 72%, while the dissolutions of Mn4+ and Ti4+ were less than 8.2%. The results showed that the Li+ extraction/insertion be progressed mainly by an ion-exchange mechanism. The acid treated samples had an ion exchange capacity of 10.6mmol/g for Li+.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2005 ◽  
Vol 51 (11) ◽  
pp. 63-70 ◽  
Author(s):  
H. Inan ◽  
B. Beler Baykal

Ammonium selective natural zeolite clinoptilolite is suggested as a possible support material for nitrifying biofilms to help improve effluent ammonium quality through its high capacity of ammonium removal in the process of ion exchange. This will especially be helpful in cases where the biofilter receives peak or variable loads routinely or occasionally. At the time of peak loads or shocks of ammonium, ion exchange capacity will provide a buffer for the effluent ammonium quality. Data to support this suggestion is presented.


Sign in / Sign up

Export Citation Format

Share Document