scholarly journals Brain functional connectivity in headache disorders: A narrative review of MRI investigations

2017 ◽  
Vol 39 (4) ◽  
pp. 650-669 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt ◽  
Anders Hougaard

Resting-state functional magnetic resonance imaging (rs-fMRI) is used to interrogate the functional connectivity and network organization amongst brain regions. Functional connectivity is determined by measuring the extent of synchronization in the spontaneous fluctuations of blood oxygenation level dependent (BOLD) signal. Here, we review current rs-fMRI studies in headache disorders including migraine, trigeminal autonomic cephalalgias, and medication overuse headache. We discuss (1) brain network alterations that are shared amongst the different headache disorders and (2) network abnormalities distinct to each headache disorder. In order to focus the section on migraine, the headache disorder that has been most extensively studied, we chose to include articles that interrogated functional connectivity: (i) during the attack phase; (ii) in migraine patients with aura compared to migraine patients without aura; and (iii) of regions within limbic, sensory, motor, executive and default mode networks and those which participate in multisensory integration. The results of this review show that headache disorders are associated with atypical functional connectivity of regions associated with pain processing as well as atypical functional connectivity of multiple core resting state networks such as the salience, sensorimotor, executive, attention, limbic, visual, and default mode networks.

Author(s):  
Yurui Gao ◽  
Muwei Li ◽  
Anna S Huang ◽  
Adam W Anderson ◽  
Zhaohua Ding ◽  
...  

BACKGROUND: Schizophrenia, characterized by cognitive impairments, arises from a disturbance of brain network. Pathological changes in white matter (WM) have been indicated as playing a role in disturbing neural connectivity in schizophrenia. However, deficits of functional connectivity (FC) in individual WM bundles in schizophrenia have never been explored; neither have cognitive correlates with those deficits. METHODS: Resting-state and spatial working memory task fMRI images were acquired on 67 healthy subjects and 84 patients with schizophrenia. The correlations in blood-oxygenation-level-dependent (BOLD) signals between 46 WM and 82 gray matter regions were quantified, analyzed and compared between groups under three scenarios (i.e., resting state, retention period and entire time of a spatial working memory task). Associations of FC in WM with cognitive assessment scores were evaluated for three scenarios. RESULTS: FC deficits were significant (p<.05) in external capsule, cingulum, uncinate fasciculus, genu and body of corpus callosum under all three scenarios. Deficits were also present in the anterior limb of the internal capsule and cerebral peduncle in task scenario. Decreased FCs in specific WM bundles associated significantly (p<.05) with cognitive impairments in working memory, processing speed and/or cognitive control. CONCLUSIONS: Decreases in FC are evident in several WM bundles in patients with schizophrenia and are significantly associated with cognitive impairments during both rest and working memory tasks. Furthermore, working memory tasks expose FC deficits in more WM bundles and more cognitive associates in schizophrenia than resting state does.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Liang ◽  
Zhenzhen Li ◽  
Jing Wei ◽  
Chunlin Li ◽  
Xu Zhang ◽  
...  

We applied resting-state functional magnetic resonance imaging (fMRI) to examine the Apolipoprotein E (ApoE) ε4 allele effects on functional connectivity of the default mode network (DMN) and the salience network (SN). Considering the frequency specific effects of functional connectivity, we decomposed the brain network time courses into two bands: 0.01–0.027 Hz and 0.027–0.08 Hz. All scans were acquired by the Alzheimer’s Disease Neuroscience Initiative (ADNI). Thirty-two nondemented subjects were divided into two groups based on the presence (n=16) or absence (n=16) of the ApoE ε4 allele. We explored the frequency specific effects of ApoE ε4 allele on the default mode network (DMN) and the salience network (SN) functional connectivity. Compared to ε4 noncarriers, the DMN functional connectivity of ε4 carriers was significantly decreased while the SN functional connectivity of ε4 carriers was significantly increased. Many functional connectivities showed significant differences at the lower frequency band of 0.01–0.027 Hz or the higher frequency band of 0.027–0.08 Hz instead of the typical range of 0.01–0.08 Hz. The results indicated a frequency dependent effect of resting-state signals when investigating RSNs functional connectivity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole Steinhardt ◽  
Ramana Vishnubhotla ◽  
Yi Zhao ◽  
David M. Haas ◽  
Gregory M. Sokol ◽  
...  

Purpose: Infants of mothers with opioid and substance use can present with postnatal withdrawal symptoms and are at risk of poor neurodevelopmental outcomes in later childhood. Identifying methods to evaluate the consequences of substance exposure on the developing brain can help initiate proactive therapies to improve outcomes for opioid-exposed neonates. Additionally, early brain imaging in infancy has the potential to identify early brain developmental alterations that could prognosticate neurodevelopmental outcomes in these children. In this study, we aim to identify differences in global brain network connectivity in infants with prenatal opioid exposure compared to healthy control infants, using resting-state functional MRI performed at less than 2 months completed gestational age.   Materials and Methods: In this prospective, IRB-approved study, we recruited 20 infants with prenatal opioid exposure and 20 healthy, opioid naïve infants. Anatomic imaging and resting-state functional MRI were performed at less than 48 weeks corrected gestational age, and rs-fMRI images were co-registered to the UNC neonate brain template and 90 anatomic atlas-labelled regions. Covariate Assisted Principal (CAP) regression was performed to identify brain network functional connectivity that was significantly different among infants with prenatal opioid exposure compared to healthy neonates.   Results: Of the 5 significantly different CAP components identified, the most distinct component (CAP5, p= 3.86 x 10-6) spanned several brain regions, including the right inferior temporal gyrus, bilateral Hesch’s gyrus, left thalamus, left supramarginal gyrus, left inferior parietal lobule, left superior parietal gyrus, right anterior cingulate gyrus, right gyrus rectus, left supplementary motor area, and left pars triangularis. Functional connectivity in this network was lower in the infants with prenatal opioid exposure compared to non-opioid exposed infants.   Conclusion: This study demonstrates global network alterations in infants with prenatal opioid exposure compared to non-opioid exposed infants. Future studies should be aimed at identifying clinical significance of this altered connectivity.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Robert L Barry ◽  
Seth A Smith ◽  
Adrienne N Dula ◽  
John C Gore

Functional magnetic resonance imaging using blood oxygenation level dependent (BOLD) contrast is well established as one of the most powerful methods for mapping human brain function. Numerous studies have measured how low-frequency BOLD signal fluctuations from the brain are correlated between voxels in a resting state, and have exploited these signals to infer functional connectivity within specific neural circuits. However, to date there have been no previous substantiated reports of resting state correlations in the spinal cord. In a cohort of healthy volunteers, we observed robust functional connectivity between left and right ventral (motor) horns, and between left and right dorsal (sensory) horns. Our results demonstrate that low-frequency BOLD fluctuations are inherent in the spinal cord as well as the brain, and by analogy to cortical circuits, we hypothesize that these correlations may offer insight into the execution and maintenance of sensory and motor functions both locally and within the cerebrum.


2020 ◽  
Author(s):  
Marielle Greber ◽  
Carina Klein ◽  
Simon Leipold ◽  
Silvano Sele ◽  
Lutz Jäncke

AbstractThe neural basis of absolute pitch (AP), the ability to effortlessly identify a musical tone without an external reference, is poorly understood. One of the key questions is whether perceptual or cognitive processes underlie the phenomenon as both sensory and higher-order brain regions have been associated with AP. One approach to elucidate the neural underpinnings of a specific expertise is the examination of resting-state networks.Thus, in this paper, we report a comprehensive functional network analysis of intracranial resting-state EEG data in a large sample of AP musicians (n = 54) and non-AP musicians (n = 51). We adopted two analysis approaches: First, we applied an ROI-based analysis to examine the connectivity between the auditory cortex and the dorsolateral prefrontal cortex (DLPFC) using several established functional connectivity measures. This analysis is a replication of a previous study which reported increased connectivity between these two regions in AP musicians. Second, we performed a whole-brain network-based analysis on the same functional connectivity measures to gain a more complete picture of the brain regions involved in a possibly large-scale network supporting AP ability.In our sample, the ROI-based analysis did not provide evidence for an AP-specific connectivity increase between the auditory cortex and the DLPFC. In contrast, the whole-brain analysis revealed three networks with increased connectivity in AP musicians comprising nodes in frontal, temporal, subcortical, and occipital areas. Commonalities of the networks were found in both sensory and higher-order brain regions of the perisylvian area. Further research will be needed to confirm these exploratory results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p &lt; 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p &lt; 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S15.1-S15
Author(s):  
Lezlie Espana ◽  
William McCuddy ◽  
Lindsay Nelson ◽  
Birn Rasmus ◽  
Andrew Mayer ◽  
...  

Few studies have examined the physiologic correlates of depressive symptoms following sport-related concussion (SRC), despite the prevalence of these symptoms following brain injury. We hypothesized that concussed athletes would have disrupted resting-state functional connectivity in emotional processing regions compared to controls, and that this disruption would be associated with greater post-concussion symptoms of depression. Forty-three concussed athletes at approximately 1 day (N = 34), 1 week (N = 34), and 1 month (N = 30) post-concussion were evaluated along with 51 healthy athletes assessed at a single visit. Resting-state fMRI was collected on a 3T GE scanner (TR = 2s); depressive symptoms were assessed using the Hamilton Rating Scale for Depression (HAM-D). Emotional processing regions of interest (ROI) were defined using an automated meta-analysis of brain regions associated with the term “emotion”. Fisher-Z transformed correlations were calculated between each ROI. A multivariate approach assessed connectivity by analyzing ROI as simultaneous response variables. Concussed athletes had significantly higher depressive symptoms relative to controls at all time points but showed partial recovery by 1-month post-concussion relative to earlier visits (p's< 0.05). Functional connectivity did not differ between controls and concussed athletes at 1 day or one-week post-concussion. However, concussed athletes had significantly different connectivity in regions associated with emotional processing at 1 month relative to 1 day post-concussion (p = 0.002), and relative to controls (p = 0.003). Follow-up analyses showed that increased connectivity between attention and default mode networks at 1-month post-concussion was common across both analyses. In addition, functional connectivity of emotional processing regions was significantly associated with depressive symptoms at 1 day (p = 0.003) and one-week post-concussion (p = 7 × 10-8), with greater HAM-D scores correlating with decreased connectivity between attention and default mode networks. These results suggest that intrinsic connectivity between default mode and attention regions following SRC may be compensatory in nature.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Stefanie Heba ◽  
Melanie Lenz ◽  
Tobias Kalisch ◽  
Oliver Höffken ◽  
Lauren M. Schweizer ◽  
...  

Correlations between inherent, task-free low-frequency fluctuations in the blood oxygenation level-dependent (BOLD) signals of the brain provide a potent tool to delineate its functional architecture in terms of intrinsic functional connectivity (iFC). Still, it remains unclear how iFC is modulated during learning. We employed whole-brain resting-state magnetic resonance imaging prior to and after training-independent repetitive sensory stimulation (rSS), which is known to induce somatosensory cortical reorganization. We investigated which areas in the sensorimotor network are susceptible to neural plasticity (i.e., where changes in functional connectivity occurred) and where iFC might be indicative of enhanced tactile performance. We hypothesized iFC to increase in those brain regions primarily receiving the afferent tactile input. Strengthened intrinsic connectivity within the sensorimotor network after rSS was found not only in the postcentral gyrus contralateral to the stimulated hand, but also in associative brain regions, where iFC correlated positively with tactile performance or learning. We also observed that rSS led to attenuation of the network at higher cortical levels, which possibly promotes facilitation of tactile discrimination. We found that resting-state BOLD fluctuations are linked to behavioral performance and sensory learning, indicating that network fluctuations at rest are predictive of behavioral changes and neuroplasticity.


2019 ◽  
Author(s):  
Alican Nalci ◽  
Wenjing Luo ◽  
Thomas T. Liu

AbstractIn resting-state functional MRI, the correlation between blood-oxygenation-level-dependent (BOLD) signals across brain regions is used to estimate the functional connectivity (FC) of the brain. FC estimates are prone to the influence of nuisance factors including scanner-related artifacts and physiological modulations of the BOLD signal. Nuisance regression is widely performed to reduce the effect of nuisance factors on FC estimates on a per-scan basis. However, a dedicated analysis of nuisance effects on the variability of FC metrics across a collection of scans has been lacking. This work investigates the effects of nuisance factors on the variability of FC estimates across a collection of scans both before and after nuisance regression. Inter-scan variations in FC estimates are shown to be significantly correlated with the geometric norms of various nuisance terms, including head motion measurements, signals derived from white-matter and cerebrospinal regions, and the whole-brain global signal (GS) both before and after nuisance regression. In addition, it is shown that GS regression (GSR) can introduce GS norm-related fluctuations that are negatively correlated with inter-scan FC estimates. The empirical results are shown to be largely consistent with the predictions of a theoretical framework previously developed for the characterization of dynamic FC measures. This work shows that caution must be exercised when interpreting inter-scan FC measures across scans both before and after nuisance regression.


Sign in / Sign up

Export Citation Format

Share Document