scholarly journals How to train your robot with deep reinforcement learning: lessons we have learned

2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.

2011 ◽  
Vol 4 (12) ◽  
Author(s):  
Jason Smith ◽  
Josh Edwards ◽  
Patricia C. Kelley

If given the chance, undergraduates have the ability to write excellent case studies worthy of being published.  This essay describes the benefits, challenges, and process of undergraduate case writing. 


2021 ◽  
Vol 2021 (169) ◽  
pp. 65-77
Author(s):  
Jennifer Brown Urban ◽  
Miriam R. Linver ◽  
Lisa M. Chauveron ◽  
Thomas Archibald ◽  
Monica Hargraves ◽  
...  

Author(s):  
Mahesh Singh

This paper will help to bring out some amazing findings about autonomous prediction and performing action by establishing a connection between the real world with machine learning and Internet Of thing. The purpose of this research paper is to perform our machine to analyze different signs in the real world and act accordingly. We have explored and found detection of several features in our model which helped us to establish a better interaction of our model with the surroundings. Our algorithms give very optimized predictions performing the right action .Nowadays, autonomous vehicles are a great area of research where we can make it more optimized and more multi - performing .This paper contributes to a huge survey of varied object detection and feature extraction techniques. At the moment, there are loads of object classification and recognition techniques and algorithms found and developed around the world. TSD research is of great significance for improving road traffic safety. In recent years, CNN (Convolutional Neural Networks) have achieved great success in object detection tasks. It shows better accuracy or faster execution speed than traditional methods. However, the execution speed and the detection accuracy of the existing CNN methods cannot be obtained at the same time. What's more, the hardware requirements are also higher than before, resulting in a larger detection cost. In order to solve these problems, this paper proposes an improved algorithm based on convolutional model A classic robot which uses this algorithm which is installed through raspberry pi and performs dedicated action.


2021 ◽  
Author(s):  
Andreas Christ Sølvsten Jørgensen ◽  
Atiyo Ghosh ◽  
Marc Sturrock ◽  
Vahid Shahrezaei

AbstractThe modelling of many real-world problems relies on computationally heavy simulations. Since statistical inference rests on repeated simulations to sample the parameter space, the high computational expense of these simulations can become a stumbling block. In this paper, we compare two ways to mitigate this issue based on machine learning methods. One approach is to construct lightweight surrogate models to substitute the simulations used in inference. Alternatively, one might altogether circumnavigate the need for Bayesian sampling schemes and directly estimate the posterior distribution. We focus on stochastic simulations that track autonomous agents and present two case studies of real-world applications: tumour growths and the spread of infectious diseases. We demonstrate that good accuracy in inference can be achieved with a relatively small number of simulations, making our machine learning approaches orders of magnitude faster than classical simulation-based methods that rely on sampling the parameter space. However, we find that while some methods generally produce more robust results than others, no algorithm offers a one-size-fits-all solution when attempting to infer model parameters from observations. Instead, one must choose the inference technique with the specific real-world application in mind. The stochastic nature of the considered real-world phenomena poses an additional challenge that can become insurmountable for some approaches. Overall, we find machine learning approaches that create direct inference machines to be promising for real-world applications. We present our findings as general guidelines for modelling practitioners.Author summaryComputer simulations play a vital role in modern science as they are commonly used to compare theory with observations. One can thus infer the properties of a observed system by comparing the data to the predicted behaviour in different scenarios. Each of these scenarios corresponds to a simulation with slightly different settings. However, since real-world problems are highly complex, the simulations often require extensive computational resources, making direct comparisons with data challenging, if not insurmountable. It is, therefore, necessary to resort to inference methods that mitigate this issue, but it is not clear-cut what path to choose for any specific research problem. In this paper, we provide general guidelines for how to make this choice. We do so by studying examples from oncology and epidemiology and by taking advantage of developments in machine learning. More specifically, we focus on simulations that track the behaviour of autonomous agents, such as single cells or individuals. We show that the best way forward is problem-dependent and highlight the methods that yield the most robust results across the different case studies. We demonstrate that these methods are highly promising and produce reliable results in a small fraction of the time required by classic approaches that rely on comparisons between data and individual simulations. Rather than relying on a single inference technique, we recommend employing several methods and selecting the most reliable based on predetermined criteria.


2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.


Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Sarthak Bhagat ◽  
Hritwick Banerjee ◽  
Zion Ho Tse ◽  
Hongliang Ren

The increasing trend of studying the innate softness of robotic structures and amalgamating it with the benefits of the extensive developments in the field of embodied intelligence has led to the sprouting of a relatively new yet rewarding sphere of technology in intelligent soft robotics. The fusion of deep reinforcement algorithms with soft bio-inspired structures positively directs to a fruitful prospect of designing completely self-sufficient agents that are capable of learning from observations collected from their environment. For soft robotic structures possessing countless degrees of freedom, it is at times not convenient to formulate mathematical models necessary for training a deep reinforcement learning (DRL) agent. Deploying current imitation learning algorithms on soft robotic systems has provided competent results. This review article posits an overview of various such algorithms along with instances of being applied to real-world scenarios, yielding frontier results. Brief descriptions highlight the various pristine branches of DRL research in soft robotics.


2020 ◽  
Vol 63 (3) ◽  
pp. 549-556
Author(s):  
Yanxiang Yang ◽  
Jiang Hu ◽  
Dana Porter ◽  
Thomas Marek ◽  
Kevin Heflin ◽  
...  

Highlights Deep reinforcement learning-based irrigation scheduling is proposed to determine the amount of irrigation required at each time step considering soil moisture level, evapotranspiration, forecast precipitation, and crop growth stage. The proposed methodology was compared with traditional irrigation scheduling approaches and some machine learning based scheduling approaches based on simulation. Abstract. Machine learning has been widely applied in many areas, with promising results and large potential. In this article, deep reinforcement learning-based irrigation scheduling is proposed. This approach can automate the irrigation process and can achieve highly precise water application that results in higher simulated net return. Using this approach, the irrigation controller can automatically determine the optimal or near-optimal water application amount. Traditional reinforcement learning can be superior to traditional periodic and threshold-based irrigation scheduling. However, traditional reinforcement learning fails to accurately represent a real-world irrigation environment due to its limited state space. Compared with traditional reinforcement learning, the deep reinforcement learning method can better model a real-world environment based on multi-dimensional observations. Simulations for various weather conditions and crop types show that the proposed deep reinforcement learning irrigation scheduling can increase net return. Keywords: Automated irrigation scheduling, Deep reinforcement learning, Machine learning.


Testing It ◽  
2011 ◽  
pp. 125-129
Author(s):  
John Watkins ◽  
Simon Mills

2005 ◽  
Vol 60 (11) ◽  
pp. 2505-2514 ◽  
Author(s):  
Natasha Palmer ◽  
Anne Mills

Sign in / Sign up

Export Citation Format

Share Document