Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition

2018 ◽  
Vol 59 (12) ◽  
pp. 1458-1465 ◽  
Author(s):  
Stefan Haneder ◽  
Florian Siedek ◽  
Jonas Doerner ◽  
Gregor Pahn ◽  
Nils Grosse Hokamp ◽  
...  

Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor’s claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDIvol), and DLP were recorded and normalized to 68 cm acquisition length (DLP68). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4–32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDIvol (–10.1 ± 12.8%), DLP (−13.1 ± 13.9%), and DLP68 (–15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256564
Author(s):  
Jung Han Hwang ◽  
Jin Mo Kang ◽  
So Hyun Park ◽  
Suyoung Park ◽  
Jeong Ho Kim ◽  
...  

Objective We compared the image quality according to the radiation dose on computed tomography (CT) venography at 80 kVp using advanced modeled iterative reconstruction for deep vein thrombus and other specific clinical conditions considering standard-, low-, and ultralow-dose CT. Methods In this retrospective study, 105 consecutive CT venography examinations were included using a third-generation dual-source scanner in the dual-source mode in tubes A (reference mAs, 210 mAs at 70%) and B (reference mAs, 90 mAs at 30%) at a fixed 80 kVp. Two radiologists independently reviewed each observation of standard- (100% radiation dose), low- (70%), and ultralow-dose (30%) CT. The objective quality of large veins and subjective image quality regarding lower-extremity veins and deep vein thrombus were compared between images according to the dose. In addition, the CT dose index volumes were displayed from the images. Results From the patients, 24 presented deep vein thrombus in 69 venous segments of CT examinations. Standard-dose CT provided the lowest image noise at the inferior vena cava and femoral vein compared with low- and ultralow-dose CT (p < 0.001). There were no differences regarding subjective image quality between the images of popliteal and calf veins at the three doses (e.g., 3.8 ± 0.7, right popliteal vein, p = 0.977). The image quality of the 69 deep vein thrombus segments showed equally slightly higher scores in standard- and low-dose CT (4.0 ± 0.2) than in ultralow-dose CT (3.9 ± 0.4). The CT dose index volumes were 4.4 ± 0.6, 3.1 ± 0.4, and 1.3 ± 0.2 mGy for standard-, low-, and ultralow-dose CT, respectively. Conclusions Low- and ultralow-dose CT venography at 80 kVp using an advanced model based iterative reconstruction algorithm allows to evaluate deep vein thrombus and perform follow-up examinations while showing an acceptable image quality and reducing the radiation dose.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Faisal Khosa ◽  
Atif Khan ◽  
Khurram Nasir ◽  
Waqas Shuaib ◽  
Matthew Budoff ◽  
...  

Purpose. To compare radiation dose and image quality using predefined narrow phase window versus complete phase window with dose modulation during R-R using 320-row MDCTA.Methods. 114 patients underwent coronary CTA study using 320-row MDCT scanner. 87 patients with mean age (61 + 13 years), mean BMI (29 + 6), and mean heart rate (HR) (58 + 7 bpm) were imaged at predefined 66–80% R-R interval and then reconstructed at 75% while 27 patients with mean age (63 + 16 years), mean BMI (28 + 5), and mean HR (57 + 7 bpm) were scanned throughout the complete R-R interval with tube current modulation. The effective dose (ED) was calculated from dose length product (DLP) and conversionk(0.014 mSv/mGy/cm). Image quality was assessed using a three-point ordinal scale (1 = excellent, 2 = good, and 3 = nondiagnostic).Results. Both groups were statistically similar to each other with reference of HR (P=0.59), BMI (P=0.17), and tube current mAs (P=0.68). The median radiation dose was significantly higher in those scanned with complete R-R phase window versus narrow phase window (P<0.0001). Independently of patient and scan parameters, increased phase window was associated with higher radiation dose (P<0.001). Image quality was better among those scanned with narrow phase window versus complete phase window (P<0.0001).Conclusion. Our study supports that good HR control and predefined narrow window acquisition result in lower radiation dose without compromising diagnostic image quality for coronary disease evaluation.


2020 ◽  
Vol 24 (3) ◽  
pp. 107-113
Author(s):  
A. Yu. Silin ◽  
I. S. Gruzdev ◽  
G. V. Berkovich ◽  
A. E. Nikolaev ◽  
S. P. Morozov

Aim: A literature review of the possibilities of applying model iterative reconstruction (MIR) in computed tomography to improve image quality, including in low-dose scanning protocols.Materials and methods. The analysis of publications devoted to the application of MIR to reduce the radiation dose and improve the quality of images in CT diagnostics of lung pathology with an emphasis on the value of the achieved radiation dose was carried out.Results. The use of MIR eliminates digital noise from medical images, improving their quality. This feature can significantly reduce radiation exposure with low-dose protocols without loss of diagnostic quality. On average, application of MIR allows to reduce the radiation dose by 70% compared to a standard protocol, without increasing the noise level of CT images and maintaining the contrast-to-noise ratio. Previous studies have shown positive experience with the use of MIR in lung cancer screening programs and monitoring of cancer patients.Conclusion. The introduction of MIR in clinical practice can optimize the radiation exposure on the population without reducing the quality of CT images, however, the threshold dose to achieve a satisfactory image quality remains unexplored.


2021 ◽  
Vol 9 (1) ◽  
pp. 103-110
Author(s):  
Muhammad Irsal ◽  
◽  
Nurbaiti Nurbaiti ◽  
Aulia Narendra Mukhtar ◽  
Shinta Gunawati ◽  
...  

Iterative reconstruction can optimize radiation dose and improve image quality on CT scan. This research method is quantitative analytic with the analysis of the results of the head CT examination parameters associated with image quality to changes in variations of 80 kV, 100 kV, 120 kV with the use of iterative reconstruction. Image quality measurements are the Hounsfield Unit (HU) value, standard deviation, and Signal to Noise Ratio (SNR) using Radiant Viewers. Effective dose measurement using the Dose Length Product (DLP). Then perform the Kruskal Wallis test to find out whether there is an effect of tube voltage and Iterative Reconstruction on the SNR value using IBM SPSS version 24. The results image quality of the HU value increase due to changes in the kV value, but the value does not change significantly when the iDose changes, for the standard The deviation has decreased due to changes in kV, but the value of the value does not experience a significant change at the time of change in iDose, while SNR increases due to changes in kV value and changes in iDose. The percentage ratio of the effective dose in the use of standard kV with 80 kV decreased radiation dose by 62%, while at 100 kV there was a decrease of 25%, and the use of 120 kV experienced an increase of 25%. The results of the Kruskal Wallis test p-value <0.001, therefore it can be concluded that there is a difference in the SNR image quality at each change in iDose and kV parameters.


2017 ◽  
Vol 45 (6) ◽  
pp. 2101-2109 ◽  
Author(s):  
Barbara K Frisch ◽  
Karin Slebocki ◽  
Kamal Mammadov ◽  
Michael Puesken ◽  
Ingrid Becker ◽  
...  

Objective To evaluate the use of ultra-low-dose computed tomography (ULDCT) for CT-guided lung biopsy versus standard-dose CT (SDCT). Methods CT-guided lung biopsies from 115 patients (50 ULDCT, 65 SDCT) were analyzed retrospectively. SDCT settings were 120 kVp with automatic mAs modulation. ULDCT settings were 80 kVp with fixed exposure (20 mAs). Two radiologists evaluated image quality (i.e., needle artifacts, lesion contouring, vessel recognition, visibility of interlobar fissures). Complications and histological results were also evaluated. Results ULDCT was considered feasible for all lung interventions, showing the same diagnostic accuracy as SDCT. Its mean total radiation dose (dose–length product) was significantly reduced to 34 mGy-cm (SDCT 426 mGy-cm). Image quality and complication rates ( P = 0.469) were consistent. Conclusions ULDCT for CT-guided lung biopsies appears safe and accurate, with a significantly reduced radiation dose. We therefore recommend routine clinical use of ULDCT for the benefit of patients and interventionalists.


Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


1996 ◽  
Vol 23 (2) ◽  
pp. 239-240 ◽  
Author(s):  
Charles A. Kelsey ◽  
Fred A. Mettler ◽  
Lisa M. Sullivan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document