James C. Knox (1977) Human impacts on Wisconsin stream channels. Annals of the Association of American Geographers 67: 224–244.

2013 ◽  
Vol 37 (3) ◽  
pp. 422-431 ◽  
Author(s):  
William L. Graf

James C. Knox’s 1977 paper “Human Impacts on Wisconsin Stream Channels,” published in the Annals of the Association of American Geographers, was a key component of a suite of three papers by him defining the response of rivers to the introduction and management of agriculture and to climate change. In this paper he used the Driftless Area of southwest Wisconsin as a laboratory where he could define fluvial responses by their sedimentary signatures in floodplain deposits. Land-use records dating back to the early 19th century along with shorter climate records provided his understanding of the drivers of change. He found that floods increased as an outcome of land-cover change. Upstream tributaries became wider and shallower as coarse deposits limited their adjustments, while main stem channels became narrower and deeper. His paper reflected the influence of his graduate advisor and especially of prominent faculty colleagues at the University of Wisconsin from fields ranging from soils and climatology to geomorphology and history. The paper was the subject of considerable debate in the professional community, but it remains a much-cited example of Knox’s work in unraveling the Quaternary and Holocene history of rivers of the Driftless Area and by extension the upper Mississippi River system.

2002 ◽  
Vol 81 (2) ◽  
pp. 211-215 ◽  
Author(s):  
R.T. Van Balen ◽  
R.F. Houtgast ◽  
F.M. Van der Wateren ◽  
J. Vandenberghe

AbstractUsing marine planation surfaces, fluvial terraces and a digital terrain model, the amount of eroded rock volume versus time for the Meuse catchment has been computed. A comparison of the amount of eroded volume with the volume of sediment preserved in the Roer Valley Rift System shows that 12% of the eroded volume is trapped in this rift. The neotectonic uplift evolution of the Ardennes is inferred from the incision history of the Meuse River system and compared to the subsidence characteristics of the Roer Valley Rift System. Both areas are characterized by an early Middle Pleistocene uplift event.


Polar Record ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 210-221 ◽  
Author(s):  
J. Stephen Dibbern

ABSTRACTDeception Island in the South Shetland Islands was the site of some of the earliest commercial activity to be carried out in the Antarctic with the early 19th century hunting of Antarctic fur seals. Nearly a century later it was the site of the most extensive anchorage for the reconstructed ships and ocean liners used as non-pelagic whale processing factories. Deception was also the site of what is the only successful land based commercial activity in Antarctic history. The Hektor whaling station operated in Whalers Bay from 1912 until 1931. Most of the remains of the station have now been obliterated by the volcanic activity that occurred in the late 1960s and 1970. By the later part of the twentieth century Deception Island had become a regular stop for the growing Antarctic tourist cruise industry. No other place in Antarctica has been so thoroughly identified with commercial activity.


2021 ◽  
Vol 2 (4) ◽  
pp. 435-441
Author(s):  
A. I. Prisyazhnenko

The development of humanity is impossible without means of signaling. Signaling in any sphere of human activity has always been a means of ensuring the safety of his life. One of these areas was railway transport, the development of which and, accordingly, signalling facilities began in the early 19th century.With the progress of technological progress in Russia, signaling tools have also evolved, which have gone from the simplest sound and optical signals to modern ones using satellite technologies. Naturally, this path in the technical evolution of mankind is of interest to scientists and just curious people, since knowledge of the stages of the origin and development of signaling allows contemporaries to improve it and at the same time not forget the basics of this area.As a result of this process, the signaling system on railway transport, its means have undergone serious changes. Primitive ways of giving commands - optical (disk, flag) and sound (whistle) to the participants of the movement were pushed by more modern means of signaling, which already involve microprocessor technology and satellite technologies.An example of modern signaling means is the automatic locomotive signaling of a single row of continuous type (ALS-EN). The signal of this type of signaling is more informative: it contains information about the number of free block sections ahead of the train, as well as about the permissible speed of its movement.


Sign in / Sign up

Export Citation Format

Share Document