scholarly journals Transmitters Involved in Central Processing of Nociceptive Information

1982 ◽  
Vol 10 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Arthur W. Duggan

Distribution studies suggest that substance P is a transmitter released by nociceptive primary afferent fibres. Acceptance of this role, however, needs more electro-physiological comparisons of the effects of substance P and the transmitter released by primary afferents on the membrane properties of dorsal horn neurones. The transmission of impulses from nociceptive afferents to supraspinal areas is subject to inhibition of both segmental and supraspinal origin. Segmental inhibition probably involves glycine and γ-aminobutyric acid as transmitters. Of supraspinal inhibitions investigated in the cat none have been shown to involve amino acids, enkephalins or 5-hydroxytryptamine but there is evidence to suggest a role for noradrenaline.

1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


1968 ◽  
Vol 46 (7) ◽  
pp. 921-928 ◽  
Author(s):  
D. J. Durzan

In late August during the onset of dormancy in spruce, seasonal levels of soluble nitrogen, rich in arginine, were high. On a fresh weight basis, diurnal levels of total soluble nitrogen and most component amino acids in roots, buds, and leaves showed maxima, one at sunrise and another in the afternoon or near sunset.Arginine and glutamine in the different plant parts contributed 44 to 83% to the alcohol-soluble nitrogen. In buds and leaves, percentage of arginine remained high and decreased slightly at midday, whereas in roots a continual drop occurred. In all organs examined, changes in glutamine reflected the double maxima of total soluble nitrogen and were greatest in roots.On a fresh weight basis, most amino acids accumulated at sunrise and near sunset; however a few especially in leaves, increased at midday, e.g. glutamic and aspartic acid, lysine, γ-aminobutyric acid, and serine.Comparison of levels of free guanidino compounds in different organs showed remarkable out-of-phase patterns. Levels of these compounds are known from 14C-arginine studies to be closely related to the metabolism of arginine.


1982 ◽  
Vol 60 (6) ◽  
pp. 850-855 ◽  
Author(s):  
Radan Čapek ◽  
Barbara Esplin

Effects of taurine and homotaurine (3-aminopropancsuIfonic acid), on excitability of primary afferents were compared with effects of γ-aminobutyric acid (GABA) in spinal unanaesthesized cats. Homotaurine and GABA, administered intravenously or topically, produced a marked increase in afferent excitability. Homotaurine was about 10 times more potent than GABA. Taurine (up to 2 mmol/kg i.v., or 10 mM topically) did not produce a consistent change in afferent excitability. The effect of homotaurine was antagonized by bicuculline or picrotoxin in doses which suppressed the primary afferent depolarization, as indicated by an increase of afferent excitability, evoked by conditioning stimulation of an antagonistic muscle nerve. Semicarbazidc, an inhibitor of GABA synthesis, did not attenuate the homotaurine-induced excitability changes of afferents while suppressing entirely the primary afferent depolarization. These findings suggest that homotaurine exerts a direct GABA-like action on feline primary afferents.


Sign in / Sign up

Export Citation Format

Share Document