Effect of Mix Design Variables on Thermal Cracking Performance Parameters of Asphalt Mixtures

Author(s):  
Mirkat Oshone ◽  
Debaroti Ghosh ◽  
Eshan V. Dave ◽  
Jo Sias Daniel ◽  
Joseph M. Voels ◽  
...  

To address asphalt pavement thermal cracking, researchers have developed performance-based evaluation tools for asphalt mixtures. A minimum fracture energy obtained from a disc-shaped compact tension test and Black space parameters determined by the stiffness and relaxation properties of asphalt mixtures are two such methods to ensure good thermal cracking resistance. Mix specifiers and producers strive to meet the requirements set by these performance-based criteria by adjusting their mix designs. However, there is a lack of information and consensus on the effect of mix design variables (such as binder grade and mix volumetrics) on thermal cracking performance of mixtures as it relates to fracture energy and Black space location. This study strives to fill this gap by quantifying the effect of: (1) recycled asphalt content, (2) effective binder content, (3) air voids, (4) asphalt film thickness, (5) voids in mineral aggregates, and (6) PG low and high temperature grades on thermal cracking resistance. A large dataset, 90 mixtures from the Minnesota Department of Transportation and 81 mixtures from University of New Hampshire database, was used for the study. The results indicate a strong correlation between binder related properties (binder content, asphalt film thickness, PG spread) and fracture energy. The correlation coefficients obtained from this study for PG spread, effective binder content, and air void can be confidently employed to achieve targeted fracture energy thresholds. The same can be achieved for the Glower-Rowe parameter at 15ºC by employing the correlation coefficients obtained for PG low temperature, virgin asphalt content, and voids in the mineral aggregate.

Author(s):  
Affan Habib ◽  
Mustaque Hossain ◽  
Rajesh Kaldate ◽  
Glenn Fager

Superpave and Marshall mix designs using local aggregates were done to study the suitability of the Superpave mix design as compared with the Marshall mix design for low-volume roads, especially shoulders. The project site was Kansas Route 177 in northeast Kansas. Three locally available aggregates, crushed limestone and coarse and fine river sands, were used in this study. Five blends with varying proportions of coarse and fine river sands were selected. Mix samples were compacted in the Superpave gyratory compactor with the applicable number of gyrations and were compacted with the Marshall hammer by using 50 blows per face. Bulk densities of the compacted samples and maximum specific gravities of loose samples also were measured for each blend. The results show that the Superpave mix design for low-volume roads and shoulders results in lower estimated asphalt content than does the Marshall method. The required asphalt content increases as the proportion of coarse river sand increases in the mix. Superpave requirements for the voids filled with asphalt (VFA) for low-volume traffic, that is, less than 0.3 million equivalent single-axle loads, appeared to be too high. High asphalt film thicknesses were computed for the mixtures that did not meet the Superpave VFA requirements. Lowering the design number of gyrations (Ndes) for compaction of samples would result in increased asphalt requirement for the Superpave mixture with a given gradation.


Author(s):  
Eshan V. Dave ◽  
Chelsea Hoplin ◽  
Benjamin Helmer ◽  
Jay Dailey ◽  
David Van Deusen ◽  
...  

1969 ◽  
Vol 18 (32) ◽  
pp. 9
Author(s):  
Jose Corrales Azofeifa ◽  
Adrian Ricardo Archilla

The selection of an appropriate aggregate structure is a key step during mix design since this directly affects mix performance and the amount of asphalt in the mix. During conventional batching procedures, the aggregates are dried and sieved into different sizes only to be recombined later into the appropriate proportions to reproduce the design gradation. This type of procedure can produce gradations with substantially larger percent passing the sieve No.200 relative to the target gradation. This paper explores the effects that fines adhered to larger particles have on the batch gradation, the resulting optimum binder content and dust proportion. An improved batching procedure that corrects for fines adhered to larger particles and trapped moisture is presented in detail and shown to replicate the target design gradation more closely. The optimum asphalt content was determined by means of the Superpave® design method for both, a gradation batched conventionally and a gradation batched with the suggested corrected procedure. The results show that the optimum asphalt content and volumetrics obtained in both cases are substantially different. The procedure developed for the fines correction is recommended for routine batching in order to minimize the inclusion of additional fines that can potentially affect the performance characteristics of the mix.


Author(s):  
Prithvi S. Kandhal ◽  
Kee Y. Foo ◽  
Rajib B. Mallick

Reports of increased difficulties in meeting the minimum voids in mineral aggregate (VMA) requirements have surfaced with the recent use of Superpave volumetric mix design. The low VMA of Superpave mixes generally can be contributed to the increased compactive effort by the Superpave gyratory compactor. This has led to the increased use of coarser asphalt mixes (gradations near the lower control points). However, the minimum VMA requirements in Superpave volumetric mix design for these coarse mixes are the same as those developed for the dense mixes designed by the Marshall method. Literature review has indicated that the rationale behind the minimum VMA requirement was to incorporate at least a minimum permissible asphalt content into the mix to ensure its durability. Studies have shown that asphalt mix durability is directly related to asphalt film thickness. Therefore, the minimum VMA should be based on the minimum desirable asphalt film thickness instead of on a minimum asphalt content because the latter will be different for mixes with different gradations. Mixes with coarse gradation (and, therefore, a low surface area) have difficulty meeting the minimum VMA requirement based on minimum asphalt content despite thick asphalt films. A rational approach based on a minimum asphalt film thickness has been proposed and validated. The film thickness approach represents a more direct, equitable, and appropriate method of ensuring asphalt mix durability, and it encompasses various mix gradations.


Author(s):  
Ahmed Saidi ◽  
Ayman Ali ◽  
Wade Lein ◽  
Yusuf Mehta

The objective of this paper is to present a procedure for designing cold in-place recycling (CIR) mixtures through balancing rutting and cracking for these mixtures. Four CIR mixtures were prepared using two recycling agents (foamed and emulsified asphalts), and compacted at two gyration levels (30 and 70 gyrations). The CIR mixtures were prepared at a constant water content of 3% and a constant cement content of 1% while curing of the compacted samples was conducted by placing them in an oven for three days at 140°F (dry curing). The CoreLok device was used for measuring air voids in compacted samples. The rutting susceptibility of these mixtures was then evaluated using the asphalt pavement analyzer (APA) and dynamic complex modulus (|E*|) while resistance to cracking was assessed using the indirect tensile strength (ITS) test and fracture energy as determined using the semi-circular bend (SCB-FE) test. A demonstration of how these tests were utilized to select a performance balanced optimum binder content for each of the four CIR mixes was also presented. The developed balanced mix design approach was used successfully for designing four CIR mixtures and selecting the optimum binder content for each mix. The results also showed that using a higher compaction level leads to increasing both foamed and emulsified asphalt CIR mixtures’ ability to resist rutting. In terms of cracking, SCB-FE results showed that foamed asphalt mixtures were better at resisting cracking than emulsified asphalt CIR mixtures.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 184-191
Author(s):  
Heraldo Nunes Pitanga HERALDO PITANGA ◽  
Tamyres Karla da Silva ◽  
T.O Silva ◽  
Geraldo Luciano De Oliveira Marques

This study aimed to analyze the influence of different methodologies to determine the maximum specific gravity on the Superpave mix design method. The comparative analysis focused on the volumetric parameters, on the choice of the design particle size and, consequently, on the respective design asphalt binder contents of the studied asphalt mixtures. Regarding the particularities of the research, there were no significant differences in the design binder contents obtained using the two adopted methodologies for determining the maximum specific gravity. From a practical point of view, the adoption of any of the methods interfered little with the results of the application of the Superpave mix design method. This fact demonstrates a quality of this method since similar researches based on the Marshall design method evidences the sensitivity of the protocol for determining the asphalt binder content in relation to the used type of maximum specific gravity.


Sign in / Sign up

Export Citation Format

Share Document