scholarly journals Optimal Platoon Trajectory Planning Approach at Arterials

Author(s):  
Meiqi Liu ◽  
Meng Wang ◽  
Serge Hoogendoorn

Cooperative (automated) vehicles have the potential to enhance traffic efficiency and fuel economy on urban roads, especially at signalized intersections. An optimal control approach to optimize the trajectories of cooperative vehicles at fixed-timing signalized intersections along an arterial is presented. The proposed approach aims to optimize throughput first, and then to maximize comfort while minimizing travel delay and fuel consumption. The proposed approach is flexible in dealing with both quadratic and more complex cost functions. Assuming fixed timing signal control in a cycle and vehicle-to-infrastructure communication, the red phase is taken into account in position constraints for vehicles that cannot pass the intersection in the green phase. Safety is guaranteed by constraining the inter-vehicle distance larger than some desired value. The approach is scalable and can be used for joint trajectory planning of one platoon approaching another stationary platoon. It can also be extended to multiple intersections with fixed signal plans. To verify the performances of the controlled platoon, simulation under three different traffic scenarios is conducted, namely: an isolated intersection with/without downstream vehicle queues, and platoon control at multiple intersections. Three baseline scenarios without control are also designed to compare performances in relation to both mobility and fuel consumption in each controlled scenario. The results demonstrate that the controlled vehicles generate plausible behavior under control objectives and constraints. Moreover, the consideration of downstream vehicle queues and the application at both an isolated signalized intersection and arterial corridors on urban roads verify the flexible characteristics of the control framework.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.


Author(s):  
Meiqi Liu ◽  
Serge Hoogendoorn ◽  
Meng Wang

In this paper, a trajectory control approach using model predictive control is proposed for cooperative (automated) vehicles. This control approach optimizes accelerations of the controlled connected and automated vehicle (CAV) platoon along a corridor with signalized intersections. The objectives of the proposed approach are to maximize the throughput first and optimize comfort, travel delay, and fuel consumption simultaneously after that. The throughput is determined according to the maximal number of CAVs that can pass the intersection during the green phase. Safety is included by penalizing smaller gaps between CAVs in the running cost. The red phase is taken into account as a virtual vehicle at the stop-line during the red time, thus the safe gap penalty with the virtual vehicle causes the first-stopping vehicle to decelerate or even stop facing the red phase. The acceleration and speed are constrained within the upper and lower bounds. The proposed approach is flexible in dealing with platoon merging, splitting, stopping, and queue-discharging characteristics at signalized intersections. Finally, the proposed control approach is verified by simulation under a baseline scenario and four scenarios, which consider signal settings and the anticipation of the red phase. The simulation results demonstrate the benefits of the proposed control approach on fuel savings, compared with the state-of-art approach which used the virtual vehicle term without anticipation. The adjustments of signal parameters in Scenario 3 and Scenario 4 demonstrate the applicability of the control approach under actuated signal control.


2019 ◽  
Vol 29 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Carlos Aguilar-Ibanez ◽  
Miguel S. Suarez-Castanon

Abstract We introduce a control strategy to solve the regulation control problem, from the perspective of trajectory planning, for an uncertain 3D overhead crane. The proposed solution was developed based on an adaptive control approach that takes advantage of the passivity properties found in this kind of systems. We use a trajectory planning approach to preserve the accelerations and velocities inside of realistic ranges, to maintaining the payload movements as close as possible to the origin. To this end, we carefully chose a suitable S-curve based on the Bezier spline, which allows us to efficiently handle the load translation problem, considerably reducing the load oscillations. To perform the convergence analysis, we applied the traditional Lyapunov theory, together with Barbalat’s lemma. We assess the effectiveness of our control strategy with convincing numerical simulations.


2021 ◽  
Vol 13 (12) ◽  
pp. 6917
Author(s):  
Binghong Pan ◽  
Shasha Luo ◽  
Jinfeng Ying ◽  
Yang Shao ◽  
Shangru Liu ◽  
...  

As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

2019 ◽  
Vol 212 ◽  
pp. 8-21 ◽  
Author(s):  
Niraj Sharma ◽  
PV Pradeep Kumar ◽  
Rajni Dhyani ◽  
Ch Ravisekhar ◽  
K. Ravinder

2021 ◽  
Vol 15 (1) ◽  
pp. 210-216
Author(s):  
Khaled Shaaban

Background: Pedestrian non-compliance at signalized crossings is unsafe and considered one of the causes of pedestrian crashes. The speed limit on most major urban roads is 60 km/hr or less. However, the speed on some urban roads is higher in some countries. In this case, the situation is more unsafe and increases the possibility of fatal injuries or fatalities in the case of a crash. Therefore, it is expected that the pedestrians will be more cautious on these roads. Aim: This study aims to explore pedestrian compliance at signalized intersections on major arterials with 80 km/hr speeds in Qatar. Methods: Video data were collected for pedestrian movements at multiple intersections. Results: The study reported a 68.1 percent compliance rate at the study locations. The results also revealed that 14.6 percent of the pedestrians crossed during the Flashing Don’t Walk interval and 17.3 percent crossed during the Steady Don’t Walk interval. These rates are considered high compared to other countries. Several variables that may influence pedestrians’ behavior were investigated. Binary and ordinal logistic regression models were developed to describe the pedestrian crossing behavior as a function of these variables. Conclusion: Male and middle-age pedestrians were more likely to cross during these two intervals. The analysis showed that female pedestrians, elder pedestrians, pedestrians crossing in groups, pedestrians waiting before crossing, and pedestrians crossing against a flow of other pedestrians are more likely to comply and cross during the Walk interval compared to other groups. Several solutions were proposed in the study to increase compliance rates.


2021 ◽  
Vol 67 (1) ◽  
pp. 31-36
Author(s):  
Anica Kocić ◽  
Stamenka Stanković ◽  
Svetlana Čičević ◽  
Nikola Čelar ◽  
Jelena Kajalić ◽  
...  

The flashing green signal indicates that the green signal will end, and its application at signalized intersections is optional. This paper presents the results of the survey conducted among Belgrade drivers. The survey was conducted in order to analyze behavior, perceptions, knowledge, and attitudes towards the flashing green signal. Results showed that drivers mostly support the flashing green implementation. Also, respondents expressed an opinion that the flashing green improves traffic efficiency and safety. A third of drivers decelerate and stop when flashing green starts. In a situation where the vehicle in front of them decelerate when flashing green starts, 13% of drivers will try to change lane and pass an intersection. This result indicates that drivers of following cars can have conflicting decisions. Results showed that half of the respondents underestimate the flashing green duration while a third of them overestimate it.


Sign in / Sign up

Export Citation Format

Share Document